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Abstract 

To encourage greener cities while reducing transportation impacts such as climate change, traffic 

congestion, and road safety issues, governments have been investing in sustainable transportation 

modes such as cycling. A safe and comfortable cycling environment is critical to encourage 

bicycle trips, since cyclists are subject to greater safety risks and represent the highest share of 

severe and fatal road collisions. Traditionally, engineering approaches have addressed road 

safety in reaction to existing collision histories. For bicycle collisions, which are rare events, a 

proactive approach is more appropriate. This study described the development of bicycle related 

macro-level (i.e. neighbourhood or traffic analysis zone level) Collision Prediction Models 

(CPMs) and tested the models as empirical tools for bicycle road safety evaluation and planning. 

This study was unique in its usage of the bicycle exposure variable represented by Bicycle 

Kilometers Travelled (BKT) as a lead exposure variable in the models. The macro-level CPMs 

that were developed for bicycle-vehicle collisions were applied to a case study of the City of 

Vancouver at the zonal level. The objectives of the study were to: (1) identify bicycle data safety 

indicators, (2) develop bicycle macro-level CPMs using generalized linear regression modeling 

(GLM), (3) demonstrate model use by applying them to a case study of the City of Vancouver 

through a macro-reactive road safety application, and (4) identify potential safety 

countermeasures for the highest ranked Collision Prone Zones (CPZs). The models were 

effective in enhancing traditional road safety initiatives and identifying and ranking dangerous 

CPZs in the City of Vancouver. The top three collision prone areas were then brought forward 

for diagnosis and remedy analysis. This case study effectively demonstrated the use of the 

models to proactively enhance bicycle safety. 
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Chapter 1: Introduction  

The transportation-related challenges of climate change, traffic congestion, public health 

and road safety are impacting cities worldwide. To encourage greener cities, governments are 

prepared to expand sustainable transportation systems for walking, bicycling, public transit, and 

car sharing to enable a better balance between private motorized transport and sustainable modes 

of transport. In contrast to motor vehicle travel, the public health benefits of active 

transportation, such as cycling and walking, are significant. In the case of bicycle transport, some 

key advantages include: energy efficiency, low cost, health benefits and zero emissions, as well 

as an effective use of road space and parking. In addition, bicycles are the most efficient and fast 

mode for the short- and medium-distance trips common in urban areas. To encourage active 

transportation, policies need to seriously consider the safety of these road users. Sustainable 

transportation planning and design that enables less dependence on single occupancy vehicles 

and promotes the safe use of bicycles could be an effective way to achieve a sustained reduction 

in road collision risk, frequency, and severity for cyclists. To emphasize the importance of 

bicycle safety research, this introduction will cover the challenges and motivations behind this 

important topic.  

 

1.1 Challenges 

The social and economic burdens due to road collisions are recognized as a global 

problem. According to the World Health Organizationôs global status report on road safety, road 

traffic injuries are the eighth leading cause of death globally, remaining unacceptably high at 

1.24 million road traffic deaths per year [1]. Current global trends suggest that by 2030 road 

traffic deaths will become the fifth leading cause of death unless urgent action is taken [2]. 
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Canada is a highly developed country, but despite significant investment in road infrastructure 

there are still concerns about road collisions. In Canada, the total number of reported motor 

vehicle fatalities and injuries in 2013 were 1,923 and 165,305, respectively [3]. In addition to the 

human cost, collisions put a large economic burden on society. Transport Canada estimates the 

annual cost of total collisions at $62.7 billion for the Canadian economy [4].  

Across Canada, cycling is growing in popularity as a daily commuting option, providing 

a convenient and affordable alternative to the congested roads and crowded transit systems in 

urban areas [5]. However, inadequate infrastructure and unsafe environments present a threat to 

meeting sustainable transportation system goals. Vulnerable road users (VRUs), such as 

pedestrians and cyclists, are subject to greater safety risks and represent the highest share of 

severe and fatal road collisions [6]. In British Columbia in 2013, 100% of the 1,500 reported 

automobile collisions involving bicycles resulted in an injury or fatality for the cyclist [7]. This 

thesis focuses on bicycle collisions with motor vehicles, since studies show that such collisions 

are more severe to the cyclist [8] [9]. The safety of cyclists is critical since bicycle travel has a 

higher per-mile casualty rate than car travel, yet poses minimal risk to other road users [10]. In 

addition, a study by the Ontario Coroner found that the majority of cycling deaths are 

preventable [11], making this an important topic of interest.  

 

1.2 Motivations 

Safety is key to increasing cycling mode share and is a critical indicator of the 

performance of sustainable transportation plans and cycling facilities [5]. Advancing 

sustainability and safety in active transportation, specifically cycling, are the motivations behind 

this thesis. The following sections outline the importance of this topic. 
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1.2.1 Environmental Concerns 

The growing interest in developing multimodal transportation networks is driven by the 

increasing awareness of environmental issues, both globally and locally. Significant effort from 

urban planners, engineers and decision makers is required to build a multimodal transportation 

system that is not dominated by private vehicles. This is important because despite 

improvements in vehicle efficiency and technology, it is simply not sustainable to continue to 

plan urban environments solely for the private automobile. Strategies to reduce vehicle travel 

through promoting sustainable transportation modes help to conserve energy and reduce 

pollution emissions, as well as provide efficiency benefits such as the potential to reduce 

congestion, roadway and parking costs, vehicle collisions and sprawl [12].  

A safe and comfortable cycling environment is critical to encourage bicycle trips, 

therefore allowing urban areas to reduce their carbon footprint, reduce their dependence on fossil 

fuels and lower greenhouse gas emissions [6]. This is because increasing the number of 

sustainable transportation users, such as cyclists, would not contribute to air pollution. In British 

Columbia, the transportation sector is the leading contributor to greenhouse gas emissions, with 

passenger vehicles contributing 39% of the transportation-related greenhouse gas emissions [13]. 

This is an important statistic, because increasing the mode share of active transportation is 

assumed to decrease the amount of people travelling by motorized vehicles. Transportation 

planning for bicycle facilities and improving bicycle safety are emerging areas of research that 

have yet to be developed to a level that matches research on vehicular traffic. 
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1.2.2 Public Health Benefits 

Bicycling as a form of active transportation and exercise has the capacity to benefit 

public health by reducing the problems associated with heart disease, obesity, high blood 

pressure, type 2 diabetes, osteoporosis and depression. When cycling is available as a daily travel 

mode, substantial public health benefits occur, potentially decreasing spending on health care by 

over $500 per year per person according to a British Columbia study [13]. The correlation 

between active transportation and obesity, for example, has been shown in countries around the 

world, with nations having a greater mode share of pedestrians, cyclists and transit users also 

having lower obesity rates [14]. Previous research has found that substantial health benefits 

received from cycling can offset the increase in collision risk, because longevity is found to 

increase with active transportation [15]. Therefore, to benefit public health, it is imperative to 

improve road safety for cyclists to decrease risks and encourage cycling for all ages and levels. 

 

1.2.3 Proactive Road Safety Initiatives 

Road safety improvement programs can be divided into two categories: reactive (i.e. 

responding to road safety problems), and proactive (i.e. taking actions to prevent the emergence 

of road safety problems). The traditional reactive road safety improvement programs (RSIPs) 

focus on the identification, diagnosis and remedy of collision-prone locations, or ñblack spots,ò 

in reaction to observed collision history. Although RSIPs are important and have been proven to 

be successful, this reactive program requires a significant collision history to exist before 

improvement action is taken. These collision-based approaches rely on data typically drawn from 

collision records, police reports, and insurance claims [16]. The traditional reactive approach to 

safety based primarily on collision data has been challenged on several accounts: 
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¶ Attribution: it can be difficult to precisely know the cause and exact situation and 

location from information obtained by police and insurance reports, and therefore the 

definitive reason of the collision; 

¶ Data volume: despite the social and economic burden of road collisions, they are 

infrequent rare events, making it challenging to draw statistically stable and significant 

inferences from actual collision data; 

¶ Data quality and availability: the process of reporting collisions is based on subjective 

observations and witness accounts, and records can be incomplete and lack details, as 

well as non-injurious or non-property-damaging incidents can go unreported; and, 

¶ Ethical concerns: paradoxical situation in which the safety analyst strives to observe 

events that they are attempting to prevent [17].  

Using reactive road safety analysis, there is little ability to predict and prevent road safety issues 

before their induced costs. Therefore, there is a need to take a proactive approach to address 

safety before problems emerge, to complement traditional reactive methods [18] [19]. A 

proactive approach would be one that addresses road safety as an important factor in the 

evaluation of transportation projects at the planning stage [20], before collisions occur. It is 

particularly important to study the safety of VRUs, as the number of collisions observed is small 

but the severity of the collisions on pedestrians and bicyclists is high.  

Typically, when implementing transportation investments, decision-making begins at the 

planning level, when current and future transportation needs are defined by planning scenarios. 

The modeled scenario results are quantified and weighted against economic, environmental and 

societal impacts. Transportation safety is an important element that should be considered at the 

planning level. While economic, environmental or social considerations can be quantified based 
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on a large amount of science and empirical data, the estimation of safety in transportation 

planning is still under development [19] [21] [22]. Until recently, practitioners lacked the 

empirical tools necessary to evaluate road safety proactively. The challenge is for planners, 

practitioners and decision makers to plan and design innovative, sustainable and safe 

transportation systems. To improve the safety of VRUs, there is a need for empirical tools to 

enable the evaluation of the bicycle safety proactively before collisions occur. 

 

1.3 Problem Statement 

The study of bicycle safety is important due to the physical vulnerability of cyclists and 

the key role that this mode of transportation plays in building sustainable, efficient and healthy 

communities. Challenges facing the study of cycling safety include the fundamental problems of 

reliance on the collision data that has quantity and quality issues and the high cost of bicycle 

collisions. In the City of Vancouver (COV), for example, VRUs (pedestrians, cyclists and 

motorcyclists) accounted for approximately 3% of road collisions between 2007 and 2013, 

however these users accounted for approximately 80% of fatalities during this time period. 

Looking towards the future, the city has a target for zero traffic-related fatalities [23]. This thesis 

will apply macro-level CPMs to the COV as a case study to proactively estimate bicycle safety. 

The development of these bicycle-related models is feasible and effective due to the cityôs 

growing cycling mode share, expanding bicycle infrastructure and rich databank of bicycle 

exposure data. Cycling accounted for approximately 4.4% of trips to work in the COV in 2011 

[24], the base year of this study, and the number of people choosing to cycle every year is 

growing.  
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A recent City of Vancouver Cycling Safety Study performed an analysis based on 

reported cycling collisions, and identified the following safety issues in the city: ódooringsô from 

on-street vehicle parking, mid-block conflict zones, óright hookô collisions with right turning 

vehicles, óleft crossô conflicts with left turning vehicles, two-way stop unsignalized intersections, 

streets without designated bikeway infrastructure, the PM peak period, and poor lightings and 

weather [23]. This study will build upon the City of Vancouver Cycling Safety Study [23] by 

developing macro-level Collision Prediction Models (CPMs) to proactively evaluate bicycle 

safety. CPMs are mathematical models that relate the collision frequency to exposure, geometric 

and socio-demographic characteristics, in order to estimate the expected collision frequency for a 

location and to facilitate safety planning. This study uses CPMs, developed using the generalized 

linear modelling approach, to overcome the shortcomings associated with traditional linear 

regression [25]. This modelling technique that predicts bicycle-vehicle collisions at the macro-

level will produce models that can be used as a reliable empirical based decision tool for 

planners and engineers.  

 

1.4 Research Objectives 

Several studies have previously developed macro-level CPMs. However, little research 

has been undertaken to develop macro-level CPMs for bicycle collisions. The few studies that 

have developed macro-level CPMs for bicycle collisions have used proxy bicycle exposure 

measures such as bicycle lane kilometers and Vehicle Kilometers Travelled (VKT). This study is 

unique in its usage of the actual bicycle exposure variable represented by Bicycle Kilometers 

Travelled (BKT) as a variable in the models. Following methodologies previously developed in 

macro-level CPMs research, the objectives of this study are: 
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1. To identify data needs and collect exposure, infrastructure and socio-demographic 

variables that would influence bicycle safety to input into the statistical model; 

2. To develop bicycle macro-level CPMs using generalized linear regression modeling 

(GLM); 

3. To demonstrate the use of the bicycle macro-level CPMs by applying the models to a 

case study of the COV to proactively evaluate the safety of bicycle use, through 

identifying, ranking and diagnosing collision prone zones (CPZs) to evaluating the level 

of bicycle safety to inform future COV bicycle transportation plans; and, 

4. To identify potential safety countermeasures for the highest ranked CPZs that could be 

applied to each area to improve bicycle safety. 

 

1.5 Thesis Structure 

This thesis is organized in five chapters. Chapter 1 introduces the challenges and 

motivations behind the topic of bicycle safety, as well as the research problem statement and 

objectives. Chapter 2 is a literature review covering the application of proactive road safety in 

transportation planning, the introduction of road safety improvement programs, the history of 

macro-level Collision Prediction Models (CPMs) and the process of model development. The 

literature review concentrates on previous bicycle safety studies, including the development of 

bicycle related macro-level CPMs. Chapter 3 describes the methodology of the thesis, including 

data extraction, model development and the application of the CPMs to macro-reactive Black 

Spot Programs. Chapter 4 presents the model results, as well as the identification, ranking, 

diagnosis and remedy of Collision Prone Zones (CPZs). Finally, Chapter 5 summarizes the 

research, conclusions, contributions and recommendations for future work. 
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Chapter 2: Literature Review 

The purpose of this literature review is to provide a summary of the research foundation 

on which this thesis has been built. The representative review will focus on the consideration of 

safety in the transportation planning process, previous work on road safety improvement 

programs, the development and application of macro-level CPMs, the selection of active 

transportation indicators for developing bicycle-related macro-level CPMs, and finally the 

process of data assembly and model development. 

 

2.1  Considerations of Transportation Safety in Planning 

2.1.1 Safety in Long-Range Transportation Planning 

Incorporating safety directly into the long-range transportation planning process can be 

an effective way to reduce the large societal and economic costs of collisions. The increasing 

need to consider road safety proactively within the transportation planning process has been 

driving road safety research throughout the past twenty-five years. The Netherlandsô SWOV 

Institute for Safety Research first developed the ñSustainable Safetyò approach in 1992, a policy 

vision with the objectives to proactively prevent severe collisions before they occur [26]. Van 

Schagen & Janssen (2000) proposed further work on the implementation of ñSustainable Safetyò 

policies targeting the organizational and financial aspects [27]. This work on collision prevention 

was continued with ñAdvancing Sustainable Safety: National Road Safety Outlook for 2005-

2020ò (2006), which updated the existing research on ñSustainable Safetyò and recommended 

implementation, innovation and reinforcement of research and development in the proactive 

safety planning field [28]. Weijermars et al. (2013) applied the ñSustainable Safetyò vision to 
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cycling safety and states the importance of short, convenient and recognizable routes, and 

separation of bicycles from vehicles [29]. 

In the U.S, the Congressô Transportation Equity Act for the 21st Century (TEA-21, 1998) 

required safety and security to be incorporated into the planning process, the first time the U.S. 

federal government committed to including safety in transportation planning. While the Act 

showed a federal commitment to develop strong linkages between safety and planning, Berkovitz 

(2001) identified the inadequacy of existing highway safety tools to fulfill this Actôs mandate. 

For example, a high-hazard location analysis may improve a dangerous location, but it will not 

correct safety problems for VRUs such as high speed and volume roadways with poorly designed 

and discontinuous facilities. The U.S. Department of Transportation recommended two national 

goals in ñThe National Bicycling and Walking Studyò (1994): to double the number of trips 

made by cycling and walking, and to reduce the number of cyclists and pedestrians killed or 

injured in traffic collisions by 10%. Berkovitz (2001) stated the importance of planning for both 

goals simultaneously, or else efforts to achieve one goal can hinder the other [30]. Furthering this 

direction, researchers de Leur & Sayed (2003) developed a method to address road safety 

proactively in transportation planning before problems occur to complement the traditional 

reactive safety methods. Their goal was to develop a systematic framework for planners to use to 

effectively address road safety concerns when developing planning alternatives [19].  

More recently in the U.S., in 2007, an update to the Statewide and Metropolitan 

Transportation Planning Final Rule (23 CFR 450) encouraged the strengthening of safety within 

the long-range transportation planning process. The Transportation Safety Planning Framework 

(2012) demonstrated how planners could integrate safety into every step of the traditional 

planning process and use safety as a decision factor in transportation plans [31]. The National 
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Cooperative Highway Research Programôs Report 05-46 ñIncorporating Safety into Long-Range 

Transportation Planningò (2006), provided transportation planners with comprehensive tools and 

strategies to consider safety in the planning process, such as an aggregate planning level safety 

prediction tool. The intent of the tool is to enable the forecasting of safety at the Traffic Analysis 

Zone (TAZ) level. The report found the safety prediction model appropriate in the following 

cases: 

¶ Setting safety targets or performance measures; 

¶ Understanding the safety impacts of large-scale projects (corridor level or higher) that 

may affect the Vehicle Kilometers Travelled (VKT), future growth, or other planning-

related factors in the absence of targeted safety countermeasures; and, 

¶ Comparing and contrasting growth scenarios in the absence of targeted safety 

countermeasures. 

These analyses would be used to understand the different levels of safety investment required to 

meet regional safety performance targets. The report stated the model to be inappropriate in the 

following cases: 

¶ Selecting land use and transportation investment strategies based on model results, as 

there are many different factors when considering an investment and safety 

countermeasures could be applied; and, 

¶ Evaluating and selecting safety countermeasures, because the models predict but do not 

explain collisions [32]. 
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2.1.2 Lack of Proactive Safety Considerations in Transportation Planning 

Globally, the World Health Organizationôs ñWorld report on injury preventionò (2004) 

identified road crash injuries as predictable and preventable, and recommended the need to 

incorporate safety as a long-term goal into land-use and transportation planning [33]. Today, 

safety-conscious transportation planning is regarded as a vital addition to traditional reactive 

safety approaches to reduce road fatalities and injuries by supporting comprehensive, system-

wide, multimodal, data-driven, and proactive transportation planning processes that integrate 

safety into transportation decision-making. 

Popular methods of sustainable safety practices, such as road safety audits, overtly 

consider road safety during the design process. With these methods, there is the risk that planners 

will consider that safety concerns would be addressed in the design stage, and will not consider 

safety at the preceding planning stage. It is therefore essential to develop a framework to 

proactively evaluate safety at the planning stage. de Leur and Sayed proposed a framework to 

proactively evaluate road safety in the planning process (2003), by systematically considering 

safety within the planning environment for planners to understand the safety impacts of the plans 

they develop [19]. Gaines & Meyer (2008) surveyed mid-size metropolitan planning 

organizations in the U.S. and found that the majority had incorporated safety considerations 

within their long-range transportation plans, but some are more proactive in the quantitative 

analysis of safety outcomes than others [34]. Despite policy advancements, transportation safety 

is still not commonly considered proactively during the transportation planning processes, in part 

due to the lack of available empirical tools. 
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2.1.3 Proactive Transportation Planning Bicycle Safety Considerations 

Transportation forecasting models, which help to inform decision makers on project 

prioritization in transportation planning, have traditionally excluded pedestrians and cyclists. To 

plan for future safe active transportation friendly communities, quantifying the use and potential 

demand of pedestrian and bicycling facilities is necessary. The Pedestrian and Bicycle 

Information Center (2015) summarized the state of practice of pedestrian and bicycle forecasting 

tools. The research suggested that modifying regional demand forecasting models to incorporate 

bicycle and pedestrian modes could provide consistency throughout the planning process. 

However, potential drawbacks include: Traffic Analysis Zones (TAZs) may be too large to 

capture internal trips, the number of trips may be less than the margin of error of model 

validation, and the models typically exclude non-motorized trips from the trip distribution and 

route selection steps. Alternative forecasting model tools include factor methods and sketch 

planning tools (using existing count data and elasticity assumptions for projections), aggregate 

demand models (regression models using existing activity and influencing attribute data) and 

Geographic Information Systems (GIS) and other spatial tools [35].  

Traditional reactive road safety approaches require a significant observed bicycle 

collision history to exist before improvement action is taken. This is a problem for VRUs, 

because the number of observed collisions may be too small for significant statistical analysis but 

the severity on pedestrians and bicyclists is high. Due to the shortage of comprehensive bicycle 

exposure data available, such as bicycle counts and forecasted volumes, it has previously been 

difficult to proactively consider bicycle safety in the planning process, and previous research has 

not yet done so effectively. Developing an empirical method to systematically consider bicycle 

safety in transportation planning is an important topic of research to build onto existing 
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literature, because this is a sustainable and healthy but vulnerable transportation mode that is 

becoming increasingly popular. 

 

2.2 Road Safety Improvement Programs 

The objective of reactive Road Safety Improvement Programs (RSIPs), or black spot 

programs, is to identify and treat locations that are considered hazardous based on the analysis of 

collision, traffic and highway data. RSIPs involve the following purposes: 

1) To identify hazardous locations and detect black spots; 

2) To identify problems through location diagnosis; and, 

3) To identify solutions and remedies by finding countermeasures to solve the problems 

[36]. 

The assumption of RSIPs is that road design typically plays a significant role in contributing to 

collision frequency. Sayed et al. (1995) found that road-related factors have caused about 32% of 

collisions based on analysis of collision data in British Columbia [37]. For that reason, 

improving the transportation engineering elements of black spots can significantly decrease a 

proportion of collisions. Properly identifying and ranking black spots for diagnosis and treatment 

is important to ensure that resources are only spent on areas with highest potential collision 

reduction (PCR).  

A black spot is defined as a location or area that are found to have a significantly high 

collision potential compared to a group of similar locations, typically through the measure of 

collision frequency. The collision prediction modelsô (CPMs) use of an exposure variable 

corrects for possible frequency bias when comparing different locations with different traffic 

volumes (exposure levels). To ensure that only truly hazardous locations are identified as black 
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spots and avoid regression-to-the-mean (RTM) errors, a popular statistical technique used to 

reduce the selection bias is the Empirical Bayes (EB) technique. The EB technique defines the 

collision probability of the mean collision frequency of a given area as dependent on the 

observed mean collision frequency of the location and an objective prior distribution based on 

empirical data from a reference population or from using CPMs. CPMs have the advantage of 

analyzing collision frequency instead of collision rates and eliminate the need for a very large 

reference population [38]. In addition, using CPMs allows for location-specific prior distribution 

to be derived for each location from an imaginary reference population, of which the estimates of 

mean and variance have shown in previous research to be more reliable than a sample from real 

reference population [39]. It is therefore vital that the appropriate CPM is selected on the basis of 

traits examined and type of safety estimate [40]. 

After the development of CPMs (as described in subsequent sections 2.3, 2.4 and 2.5) and 

the selection of the appropriate model the first step is to estimate the safety of the prior 

distribution, Ὁɤ, by inputting the values of each locationôs values into the CPM equation. The 

prior distribution variance, is calculated as: 

 
ὠὥὶ Ὁɤ

Ὁɤ

‖
 (2.1)   

and assumes that the prior distribution follows a gamma distribution with the shape and scale 

parameters, alpha ‌ and beta ‍, shown as: 

 ‌ ‖ (2.2) 

 ‍
‖

Ὁɤ
 (2.3) 
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Where: 

Ὁɤ : predicted collision frequency 

 ‖ : overdispersion parameter  

 ‌ : alpha, shape parameter 

 ‍ : beta, scale parameter 

This model outputs allow for the development of location-specific estimates for Ὁɤ and 

ὠὥὶ Ὁɤ. The following step is to gather local observed collision history data to refine the prior 

estimate provided by the CPM to define the posterior distribution. This posterior distribution 

represents how the mean collision frequency varies in a subpopulation of variables having 

similar traits in terms of traffic, geometry and collision history, and is gamma distributed with 

the shape and scale parameters ‌ and ‍ shown as: 

 ‌ ‖ ὧέόὲὸ (2.4) 

 
‍
‖ Ὁɤ

Ὁɤ
 (2.5) 

Where: 

ὧέόὲὸ : the locationôs or zoneôs collision history. 

The mean of the posterior distribution is in other words the EB safety estimate for location i, 

Ὁὄ. The mean, Ὁὄ, and the variance, ὠὥὶὉὄ, of the posterior distribution are: 

 
Ὁὄ Ὁɤȿὣ ὧέόὲὸ

Ὁɤ

‖ Ὁɤ
‖ ὧέόὲὸ (2.6) 

 
ὠὥὶὉὄ ὠὥὶɤȿὣ ὧέόὲὸ

Ὁɤ

‖ Ὁɤ
‖ ὧέόὲὸ (2.7) 
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Where: 

 Ὁὄ : EB safety estimate for location, i 

The final step to identify black spots is to compare the results of the value of each locationôs 

safety, Ὁὄ to the regional average or norm for locations with similar traits. Each location would 

be considered collision prone if there is a significant probability, „, usually 0.95 or 0.99, that the 

EB safety estimate, Ὁὄ exceeds the specified standard. The location is identified collision prone 

if the following condition is met:  

 

ρ Ὢ ‗Ὠ‗ ρ
‖Ὁɤ ρϳ ‗ Ὡ ϳ

ɜ‖ ὧέόὲὸ
Ὠ‗ „ (2.8) 

 

Where: 

 „ : probability that the EB safety estimates exceed a specific value (usually 0.95 or 0.99) 

Once a location has been determined as collision prone, ranking must occur to ensure the 

locations in most need of treatment are looked at first. Ranking criteria has typically used the 

potential collision reduction (PCR), based on the difference between expected and observed 

collision frequency: 

 ὖὅὙ Ὁὄ Ὁɤ  (2.9) 

 

Following black spot identification and ranking for treatment, a safety diagnosis is performed. 

First, collision history is analyzed to identify an overrepresentation of clusters of specific 

collision types by comparing percentages of specific collision types to other similar locations. 
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Second, location specific traits are identified and analyzed to identify potential causes of 

overrepresented collision types. Once the safety issue has been identified, the next step is to 

generate a list of potential remedies to decide on the remedy for the specific location. The final 

choice of remedies to implement will involve engineering judgement and experience [38] [40]. 

 

2.3 Macro-Level Collision Prediction Models 

2.3.1 Previous Research on Macro-Level Collision Prediction Models 

Progress in road safety research has improved the empirical tools for proactive road 

safety management, including the development of macro-level collision prediction models 

(CPMs). Due to the interest in community-wide proactive safety planning, there has been a 

growing body of research produced on the development of macro-level CPMs to date. The first 

studies to develop CPMs as planning tools to predict and explain collisions by Ho & 

Guarnashelly (1998) and Lord, Persaud & Palmisano (2002) applied micro-level models 

determining the level of safety for single locations, such as intersections, based on an exposure 

variable of traffic volume obtained from regional transportation planning models, EMME/2 

forecasts [41] [42]. Issues with micro-level CPMs were that they were sensitive to the exposure 

variable of traffic volume, data intensive, and applied to a singular locational level, making it 

difficult to predict safety accurately long-term on a larger scale. Further studies found macro-

level CPMs as an effective alternate tool for macro-reactive use to identify, diagnose and remedy 

hazard locations [21] and proactive road safety planning [20]. Macro-level CPMs aggregate 

explanatory variables to the TAZ level, before relating them to collision occurrence. Successful 

macro-level CPMs require data assembly and model development, both processes that are 

explained in subsequent sections. 
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There are several important studies that apply macro-level CPMs to evaluate safety at the 

planning stage. Hadayeghi et al. (2003) developed macro-level accident prediction models to be 

used as a safety criterion in the evaluation of urban transportation systems. The models were 

developed for Toronto, Canada by applying data to the traffic zone level (463 total zones) with 

inputs from the regional EMME/2 transportation model. The models found that the number of 

accidents per zone increased as the VKT, road kilometers, total employment and household 

population and intersection density increased, and decreased with higher posted speeds and 

higher congestion. The results found the goodness-of-fit of the models produced mixed results, 

so the models were further developed into Geographically Weighted Regression (GWR) models 

to explore the relationship between zonal collisions and explanatory planning variables. 

However, since the GWR models resulted in inconsistent improvements the authors noted the 

significance of data quality to their results [43].  

Ladron de Guevara et al. (2004) developed CPMs for 859 traffic zones in Tucson, 

Arizona that associated increased collisions with increased population density, employment 

density, intersection density and arterial and collector roads lane-miles. Due to the lack of 

availability of reliable traffic volume forecasts, this study used population density as the leading 

exposure variable instead of exposure variables typically used (i.e. VKT, AADT). The study 

found that high population density was related to high collision occurrence; zones with high 

employment, intersection density and arterial roads were associated with higher number of injury 

and property damage (PDO) collisions; and, high intersection density was associated with 

decreasing severity of collisions. The question of causation or correlation of the model variables 

to collisions has yet to be verified [44]. 
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Lovegrove and Sayed (2006) developed macro-level CPMs calibrated for 577 zones the 

Greater Vancouver Regional District, now called Metro Vancouver, Canada, incorporating a 

higher quality of accident data due to the comprehensiveness of the Insurance Corporation of 

British Columbia (ICBC) data used. The models developed included the total and severe traffic 

collisions during the AM peak scenario for urban and rural land use. The principle exposure 

variable used in the models was either vehicle kilometers travelled (VKT) or total lane 

kilometers (TLKM). This study obtained the exposure variables from two sources: measured 

with GIS software (TLKM) or modeled from EMME/2 forecasts (VKT). The CPMs were 

developed using generalized linear regression to predict mean collision frequency based on 

statistical associations with both measured and modelled exposure variables, to compare results 

and provide practitioners without access to EMME/2 software an alternative method to estimate 

exposure variables. The developed models were grouped into four themes according to their 

explanatory variables: 

¶ Exposure variables consisted of attributes describing the number of vehicles, roads and 

congestion in each zone (i.e. VKT, TLKM, average congestion, average speed). 

¶ Sociodemographic variables consisted of variables describing residents, workers and land 

use (i.e. average family size, home density, population density). 

¶ Network variables consisted of variables describing the road network in each zone (i.e. 

number of traffic signals, intersection density). 

¶ Transportation demand management (TDM) variables consisted of variables describing 

the characteristics of travel demand in each zone (i.e. total commuters, commuter density, 

number of drivers commuting). 
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The study found that increased collisions were associated with the majority of explanatory 

variables, and decreased collisions were associated with higher family size, percentage of core 

residential area, number of three-way intersections and local road kilometers [21].  

 Most macro-level CPMs in previous studies have been developed for vehicle collisions 

only. Recently there have been models developed taking into account transit characteristics and 

transit collisions by Cheung et al. (2008) [45] and using transit physical and operational elements 

and transit network indicators as explanatory variables by Quintero et al. (2012) [46] [47]. In 

addition, studies developing macro-level CPMs to predict bicycle safety will be outlined in the 

following section. 

 

2.3.2 Previous Research on Systematically Applying CPMs to the Planning Process 

A key step after creating macro-level CPMs is to develop a systematic method to apply 

the CPMs to the planning environment. The models could be used to optimize the planning 

process by assessing the safety impacts of different planning alternatives. Chatterjee et al. (2003) 

summarized a number of crash predictions workshops in the U.S., with the objective to identify 

tools for assessing the safety impact of long-range transportation plans. The challenge was to 

develop simplified crash prediction models based on available variables that could be used for 

long-range forecasts, such as traffic volume. A major recommendation for considering quantified 

safety in long-range planning was the practice of comparing scenarios on a relative basis. Due to 

lack of data on bike and pedestrian collisions, the research stated a recommendation to analyze 

the impacts of alternative scenarios on the safety of bicyclists and pedestrians for policy makers 

to understand the safety differences for various levels of investment in alternate modes [48]. In 
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addition, Hirst et al. (2003) noted that the CPMs developed must be updated and recalibrated on 

a regular basis, because accident risks decline over time [49]. 

The macro-level CPMs developed in [21] for Metro Vancouver were applied to two road 

safety planning applications of (1) traffic calming and (2) neighbourhood planning road 

networks, by Lovegrove & Sayed (2006). While 47 CPMs were developed in [21], a six step 

selection process considering scope, task, land use type, relevant variable themes, collision 

theme and data quality was used to select the appropriate number of models needed for each 

safety application. Reducing the amount of data assembly effort through this process makes the 

models and guidelines reasonable for use by practitioners, providing them an empirical tool to 

complement traditional road safety improvement programs [22]. The planning-level safety 

prediction models developed in [43] for Toronto were further presented with illustrative 

applications to demonstrate how they could be used as decision support tools for planners to 

explicitly consider safety in the planning process. The study presented macro-level collision 

modification factors (CMFs) to illustrate how the models can be used to examine the impact of 

each planning variable on the safety of an urban zone [50]. 

Previously developed community-based macro-level CPMs were applied to evaluate the 

road safety of a transportation plan by Lovegrove, Lim, & Sayed (2010), with the objective to 

test model use in Metro Vancouver. The researchers found the exposure variable of VC 

(neighbourhood congestion) to be very influential in model estimates, significance and goodness-

of-fit, and recommended that only VC-inclusive CPMs are used. In addition, due to large data 

extraction and assembly effort, it was recommended that the minimum number of models 

required to meet data quality and analytical needs are selected, and future research on process 

automation is needed [20]. The same previously developed community-based macro-level CPMs 
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were also used to calculate the road safety effects of mobility management strategies such as 

smart growth, congestion pricing and improved walking and cycling transportation options by 

Lovegrove and Litman (2008), concluding that these transportation demand management 

strategies have the potential to improve traffic safety [51]. 

 

2.4 Developing Bicycle- Related Macro-Level CPMs 

2.4.1 Identifying Bicycle Safety Indicators 

As discussed previously, there are limitations with using existing bicycle-vehicle 

collision data, due to the small nature of bicycle collision datasets. Littman et al. (2000) 

developed a guide which states bicycle crash data history needs to be evaluated by type of crash 

and contributing factors, pedestrian and cyclist demographics, location type (intersection 

midblock, driveways, etcetera), to identify potential problems. However, issues with relying on 

existing pedestrian and cyclist collision data include: locations with a high frequency of 

collisions indicate some (unknown) combination of high risk or heavy use, pedestrian and 

cycling collisions tend to be underreported, and a large number of collisions would have to 

actually occur to acquire sufficient collision data [52]. For these reasons, it would beneficial to 

develop an empirical tool to predict collisions without waiting for collisions data to accumulate. 

To develop bicycle-related macro-level CPMs, it is necessary to understanding bicycle-related 

indicators. These macro-level CPMs can support the economic justification for decision makers 

investing in bicycle infrastructure and can aid policy makers in promoting bicycling effectively 

by quantifying the economic trade-offs. 

The Netherlandsô SWOV Institute for Safety Research (2014) chose a set of indicators 

for lack of safety in cycling infrastructure based on a literature review and consultation with road 
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safety experts, with the objective to use these indicators to assess cycling infrastructure in 

practice. The study found factors that had the most impact on bicycle safety are: the volume of 

cyclists (exposure), the visibility at intersections, the density of intersections, the speed 

differences between road users, the lighting, the pavement surface, the width of the bicycle 

facility and the degree of separation from road users [53]. In addition, the National Highway 

Traffic Safety Administration (2014) found that most bicycle deaths occurred in urban areas and 

non-intersection locations and during the afternoon to evening rush hour [54]. 

 To develop reliable empirical tools, first it is necessary to understand all the factors 

influencing bicycle use. Xing et al. (2010) classified all possible factors into individual factors 

defined by a cyclistôs characteristics (gender, age, income and experience), social environment 

factors defined by transportation costs, bicycle culture and existing policies and physical 

environment factors defined by geography and infrastructure [55]. Previous studies have found 

that men are more likely than women to cycle [56], household income has a negative effect on 

bicycle use [57], and car ownership has a negative effect on bicycle use [58]. Population density 

is also an important predictor, as higher densities typically indicate urban environments with 

shorter destinations and mixed land-use [32], which are ideal environments for bicycle use. In 

terms of infrastructure, previous studies have found that good bicycle facilities (i.e. bike lanes, 

lighting and bicycle parking) promote bicycle mode shift, while a fragmented bicycle network 

reduces bicycle mode shift [59]. Reynolds et al (2009) performed a literature review on 

transportation infrastructure and bicycle safety, and concluded that purpose-built bicycle 

infrastructure reduces collision and injury frequency among cyclists, along with street lighting, 

paved surfaces and low grades [60]. 

 



 

 

25 

2.4.2 Macro-Level Bicycle Collision Prediction Models Using Generalized Linear 

Modelling 

Most macro-level CPMs have been developed for vehicle collisions only, and very few 

researchers have included bicycle variables in the analysis. Due to the increase of bicycle volume 

on-street and its effect on safety, researchers have recommended the importance of developing 

bicycle related macro-level CPMs [61]. Researchers who have studied this topic hypothesize that 

increasing the amount of bicycle infrastructure, which in turn increases bicycle use, will also 

improve road safety [62] [63]. Lovegrove (2007) developed community-based macro-level 

CPMs using negative binomial regression for Metro Vancouver and created a bicycle-vehicle 

collision model, finding increased collisions to be associated with increased bicycle mode share 

[38]. Wei, Alam and Lovegrove (2011) identified potential factors influencing bicycle use, based 

on a comprehensive literature review. The study then developed several new macro-level CPMs 

based on the bicycle-related indicators to estimate the road safety changes resulting from bicycle 

improvement at the macro-level. In addition to the previously used exposure, sociodemographic, 

transportation demand management and road network variables [21] [38], the study chose new 

variables representing factors influencing bicycle use and safety to be considered in new CPM 

development together with old variables, shown in Table 1. 
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Table 1: Additional variables influencing bicycle use according to Wei, Alam & Lovegrove [21] [38] 

Variable  Abbreviation 

Dependent Variables 

Total collisions (auto, bike, transit) over 3 years T5 

Bicycle-only collisions over 5 years B5 

Explanatory Variables 

Bicycle lane kilometers (leading variable) BLKM  

Bicycle kil s traveled (leading variable) BKT 

Work-home trip distance (kilometers) WHD 

Share of population at age <=30 (%) POP<30 

Proportion of males/females M/F 

Mean number of vehicles per household (proxy of household income) VHH 

Average gasoline price GAS 

Average annual cost per capita spending on bicycle improvements ACPB 

Number of bicycle racking locations NBR 

Stop sign density for bicyclists SSBD 

Stop sign density for auto SSD 

Average annual precipitation (inches) PRPT 

Average annual temperature (centigrade) TEPT 

Average share of hills (=area of hills/zonal area) HILL   

 

The study used bicycle lane length as an exposure variable, and found it to have a significantly 

positive relationship with the dependent variable total collision frequency. Wei, Alam and 

Lovegrove (2011) identified several shortcomings, the most notable being the absence of a 

transportation planning model for bicycle use resulting in the omission of the leading exposure 

variable bicycle kilometers travelled and a lack of bicycle-related variable data, such as 

temperature and precipitation [63]. 

Wei and Lovegrove (2013) developed macro-level community-based CPMs for bicycle-

vehicle collisions, using data from the Central Okanagan Regional District and using bicycle lane 

kilometers and total lane kilometers as lead exposure variables. In this study, the bicycle lane 

kilometers variable t-statistic did not meet the 95% level significance test and had to be removed. 
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The model results showed that an increase of bicycle-vehicle collisions was associated with an 

increase in total lane kilometers, bicycle lane kilometers, bus stops, traffic signals, intersection 

density and percentage of arterial-local intersections. Data issues in the study included the 

unavailability of EMME/2 exposure variables such as bicycle kilometers travelled, vehicle 

kilometers travelled and volume/congestion, and the relatively low mode share of bicycle use in 

the Central Okanagan Regional District. The results supported the studyôs hypothesis that North 

Americaôs current low levels of bicycle use can expect to see an increase in bicycle collisions as 

bicycle mode share increases, but the authors continue to predict that as bicycle mode share 

increases beyond the yet unknown threshold level, a net safety improvement should be observed 

[62]. 

 

2.4.3 Macro-Level Bicycle Collision Prediction Models Using Other Statistical 

Techniques 

There has been research on alternative modelling methods to the negative binomial 

regression model used to look at bicycle safety from the macro-level perspective. A least squares 

analysis was used to examine the relationship between number of pedestrians or cyclists and 

their collisions with motor vehicles by Jacobsen (2003). The research found the likelihood that a 

bicyclist will be struck by a motorist varies inversely with the amount of walking or bicycling, 

across communities of varying size, from specific intersections to cities and countries, and across 

time periods [64]. A binary logistics regression was used to model relationships between 

different types of collisions, including bicycle collisions, and independent variables in 

demographic, land use, and roadway accessibility by Kim et al. (2010). The bicycle collision 

model results suggested that demographic variables such as employment and income level were 
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significantly and positively associated with bicycle collisions and accessibility variables such as 

number of bus stops, bus route length and number of intersections were positively associated 

with bicycle collisions [65].  

Further research on bicycle-vehicle collisions in Beijing from Yan et al. (2011) 

concentrated on the inter-relationships between irregular maneuvers, crash patterns and bicycle 

injury severity, using a binary logit model to preform bicyclist injury severity analysis. The 

studyôs results suggest the installation of median division between roadway and bikeway, 

improving lighting on road segments and reducing speeds on high bicycle volume roads would 

improve the safety of cyclists [66]. Research investigating the effects of spatial correlation using 

a Bayesian spatial framework to model pedestrian and bicycle collisions at the macro-level by 

Siddiqui, Abdel-Aty, & Choi (2011) recommended that spatial correlation should be considered 

when modelling pedestrian and cyclist collisions at the aggregate level [67]. Another study by 

Abdel-Aty et al. (2014) integrated trip and roadway characteristics to develop several models at 

the TAZ level, including bicycle-related crash models on the foundation of various estimator 

groups [68]. Yasmin & Eluru (2014) investigated the influence of built environment on bicycle 

safety at the TAZ level, using latent segmentation based count models from single state and dual 

state systems to formulate models for Montreal and Toronto [69]. A study by Kwon et al. (2015) 

developed a bicycle accident forecasting model using multiple regression analysis as well as 

performed a survey for the analysis of road safety issues and presented safety improvement 

measures [70]. Bicycle safety is increasingly becoming an important topic of interest worldwide, 

as more research is done on techniques to build models to predict and analyze safety impacts on 

cyclists. 
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2.5 Data Assembly 

The acquisition and processing of the data required for model development is a major task 

for developing macro-level CPMs. Data needs at the planning level can range from socio-

demographic to infrastructure to synthesized data from traffic forecast models. The quality and 

quantity of data is critical to the quality of the model predictions, and can vary substantially due 

to the large number of data sources typically required. For example, for traffic volume forecast 

data from regional transportation planning models (EMME/2), data quality, as a function of how 

road and transit network is defined, is more of an issue than data completeness [71]. Potential 

data extraction sources, such as regional or municipal governments and census, must be 

considered in order to confirm data costs, availability, quality, and predictability [38]. Previous 

research has identified four themes for variables, including: 

¶ Exposure variables, consisting of data measured through GIS or modeled through 

EMME/2; 

¶ Socio-demographic variables, typically consisting of data measured through census or 

extracted from EMME/2 model; 

¶ Transportation demand management variables consisting of measured through census or 

modeled through EMME/2 data; and, 

¶ Network variables, consisting of measured through GIS data [38] [62] [46] [20] [21]. 

In addition, collision variables are dependent parameters in the macro-level CPMs, and previous 

research has used total collisions, severe collisions or property damage only collisions as 

dependent variables [72]. Including new types of data sources and using up-to-date GIS data is 

important for the development of empirically sound and relevant models. Many previous studies, 

such as [46] [20] [21] [50], have used outdated data to develop macro-level CPMs [72].  
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With regards to acquiring bicycle exposure data, possibilities range from using annual 

average daily traffic (AADT) from bicycle counts [73] to using smartphones to collect bicycle 

data [74]. Big data from smartphones and other applications has the potential to influence future 

methods of collecting travel behaviour data suitable for mobility studies [75]. This thesis uses a 

method of quantifying the use of bicycle facilities by calculating exposure of total annual bicycle 

volume on a road, the AADT. Esawey, Lim, et al. (2013) expanded daily bicycle traffic volume 

to AADT, by developing daily adjust factors such as grouping daily factors by 

weekday/weekend, developing weather-specific factors and developing factors for different road 

classes. The COV has a rich catalogue of bicycle count data, which allowed this analysis to make 

use of daily bicycle volume data for the years 2010 and 2011. Due to monthly weather 

fluctuations that have an impact on bicycle travel, this research proposed to estimate monthly 

average daily bicycle traffic, as well as AADT. The study resulted in a comprehensive database 

of annual and monthly average daily bicycle traffic [73], which will be used further in this thesis 

to represent the bicycle exposure variable. 

The following Table 2 represents variables used in previous macro-level CPMs 

development, as well as potential suggestions for future bicycle macro-level CPM development 

from other researchers [62] [72] and this study. 
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Table 2: Potential included variables for macro-level CPMs 

Theme Included Variables Symbol Derivation Citations 

Exposure Vehicle Kilometres Traveled  VKT Modeled [20] [46] [21] 

Neighbourhood Congestion 

(volume/capacity) VC 

Modeled/ 

Measured [20] [21] 

Total Lane Kilometres TLKM  

Modeled/ 

Measured 

[20] [46] [62] [21] 

 

Total Neighbourhood Area AREA Measured [21] [20] [62] 

Total Bicycle Lane Kilometres TBLKM  Measured [62] 

Total Transit and Vehicle Kilometres 

Travelled TTVKT Modelled [46] 

Total Transit Kilometres Travelled TKT Modeled [46] 

Average Posted Speed ASP Measured [21] 

Bicycle Kilometres Traveled BKT Modeled Suggested 

Average Neighbourhood Congestion AVC Measured Suggested 

    

Collisions Total Collisions over X years TX Measured [20] [21] [46] 

Severe Collisions (fatal and injury) over X 

years SX Measured [46] [21] [20] 

Property Damage Collisions over X years PDOX Measured [46] 

Total Bicycle/Vehicle Collisions TBX Measured [62] 

Severe Bicycle/Vehicle Collisions SBX Measured Suggested 

Bicycle Collision Frequency BFX Measured Suggested 

Rush Hour Collisions TRX Measured Suggested 

    

Socio-

demographic 
Urban Zones URB  Measured [62] 

Rural Zones RUR Measured [62] 

Population POP Measured [62] [46] [21] 

Population Density POPD Measured [62] [20] [21] [46] 

Population aged <30 POP30 Measured [62] 

Male/Female Ratio M/F Measured [62] 

Residents Working WKG Measured [21] 

Jobs per Unit Area WKGD Measured [20] [21] 

Home NH Measured [62] 

Housing Units per Unit Area NHD Measured [62] [20] [21] [21] 

Average Family Size FS Measured [20] [21] 

Employment Level EMP Measured [62] [20] [46] 

Employment Percentage EMPP Measured [62] [20] 

Employment Density EMPD Measured [62] [46] 

Participation in Labour Force PARTP Measured [62] 

Unemployed Residents UNEMP Measured [62] [21] 

Unemployed Rate UNEMPR Measured [62] 
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Theme Included Variables Symbol Derivation Citations 

Average Income INCA Measured [62] 

Median Household Income MEDI Measured Suggested 

Parking Costs PC Measured Suggested 

Higher Education HE Measured Suggested 

Land Use LU Measured Suggested 

Percentage of Commercial Land Use COMM Measured Suggested 

Percentage or Residential Land Use RES Measured Suggested 

Percentage of High Density HDLUP Measured Suggested 

Work-Home Trip Distance WHTD Measured Suggested 

    

Transportation 

Demand 

Management  

Core Area CORE Measured [20] [21] [62] 

Core Percentage CRP Measured [20] [21] [62] 

Total Commuters TCM Measured [20] [21] [62] [46] 

Commuter Density TCD Measured [21]  

Percentage of Transit Commuters BUSP Measured [62] [46] 

Percentage of Bicycle Commuters BIKEP Measured [62] 

Percentage of Pedestrian Commuters PEDP Measured [62] 

Number of Drivers Commuting from Each 

Zone DRIVE Measured [21] 

Percentage of Driving Commuters DRIVEP Measured [20] [62] 

Percentage of Car Passenger Commuters PASSP Measured [62] 

Shortcut Capacity Through Local Roads SCC Measured [20] [21] 

Shortcut Capacity x Neighbourhood 

Congestion SCVC Measured [20] [21] 

    

Network Number of Signals SIG Measured [21] [62] 

Signal Density SIGD Measured [20] [21] [62] 

Number of Intersections INT Measured [21] [62] 

Intersection Density INTD Measured [20] [21] [62] 

Number of Intersection per Total Lane Km INTKD Measured [21] [62] 

Percentage of Three-Way Intersections I3WP Measured [20] [21] [62] 

Number of Arterial-Local Road 

Intersections ALKM  Measured [62] 

Number of Arterial Lane Kilometres CLKM Measured [62] 

Number of Local Lane Kilometres LLKM  Measured [62] 

Percentage of Arterial-Local Road 

Intersections IALP Measured [20] [21] [62] 

Percentage of Arterial Lane Kilometres ALKP Measured [20] [21] [62] 

Percentage of Local Lane Kilometres LLKP Measured [21] [62] 

Bus Only HOV Lanes BUSHOV Measured [46] 

2+ HOV Lanes TWOHOV Measured [46] 
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Theme Included Variables Symbol Derivation Citations 

3+ HOV Lanes THRHOV Measured [46] 

Bus Stops BS Measured [62] [46] 

Bus Stop Density BSD Measured [62] [46] 

Near Sided Stops NS Measured [46] 

Far Sided Stops FS Measured [46] 

Midblock Stops MB Measured [46] 

Stops in a Parking Lane PL Measured [46] 

Stops in a Through Lane TL Measured [46] 

Stops in a Bus Bay BB Measured [46] 

Stops in a Paved Shoulder PS Measured [46] 

Stops in a Gravel Shoulder GS Measured [46] 

Number of Routes NR Measured [46] 

Total Route Length L Measured [46] 

Net Route Length NL Measured [46] 

Sum of Route Frequencies in Peak Period FAM Measured [46] 

Number of Traffic Circle Intersections INTTC Measured Suggested 

Percentage of Traffic Circle Intersections INTTCP Measured Suggested 

Number of Alleyways AW Measured Suggested 

Percentage of Alleyways AWP Measured Suggested 

Number of Sidewalks WALK  Measured Suggested 

Sidewalk Density WALKD  Measured Suggested 

Percentage Topography Over Specific Grade TOP Measured Suggested 

Number of On-street Parking PARK Measured Suggested 

Percentage of On-street Parking PARKD Measured Suggested 

Number of Bike Racks BIKER Measured Suggested 

Percentage of Bike Racks BIKERD Measured Suggested 

Number of Stop Signs SSD Measured Suggested 

Percentage of Stop Signs SSP Measured Suggested 

Average Annual Precipitation PERP Measured Suggested 

Average Annual Temperature TEMP Measured Suggested 

 

2.6 Model Development 

Macro-level CPMs are valuable tools commonly used for road safety evaluations, 

detection and ranking of accident-prone locations and safety planning for neighbourhoods, cities, 

or regions. Because collisions are discrete, non-negative and rare events it is difficult to develop 
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suitable statistical models to explain them. Previously, models were developed using a linear 

relationship before further research by Miaou & Lum (1993) showed that the basic assumptions 

for linear regression (normal error structure, constant error variance and linearity) did not apply 

in the case of collision datasets [76].  

Generalized linear regression (GLM) assuming a non-normal error structure distribution, 

usually a Poisson or a Negative Binomial (NB) error structure, has become the norm in recent 

literature, overcoming the limitations of linear regression models and producing better fit to the 

observed collision data [38]. Work to date by researchers developing and applying macro-level 

CPMs have used computer applications of GIS along with EMME/2 and traditional database and 

spreadsheet applications such that the datasets can be assembled for the creation of macro-level 

CPMs [71] [20] [21] [62]. 

The GLM approach is based on work by previous researchers, including Sayed & 

Rodriguez (1999). The assumption is Y is a random variable describing the number of collisions 

at a specific time period. Previous research has found the point probability function of Y is given 

by the NB distribution with an expected mean and variance of the of: 

 
Ὁὣ ‘Ƞ ὠὥὶὣ ‘

‘

‖
 

(2.10) 

In contrast, the Poisson error structure has an equal mean and variance, giving it the advantage of 

being simpler. However this advantage can also be seen as a limitation. Since collision data has 

often been found to be overdispersed (with the variance being greater than the mean), the NB 

distribution is typically a more realistic assumption than the Poission distribution [25]. 
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2.6.1 Model Form 

Previous research [77] has noted that the model form should satisfy two conditions: 

1. The model must produce logical results, for example at zero exposure collisions must 

equal to zero; and, 

2. In order to use GLM, there must be a recognized link function that can linearize the 

model form to estimate coefficients during the GLM process [38] [46]. 

The model can be expressed mathematically based on the following equation form, from 

previous research [77] [21] [20]: 

 Ὁɤ ὥὤ ὩВ  (2.11) 

Where: 

E(ɤ : predicted collision frequency 

ὥȟὥȟὦ : model parameters 

ὤ : external exposure variable 

ὢ : explanatory variables 

 

2.6.2 Error Structure  

The GLM approach for developing the models assumes an error structure that is best 

described by Poisson or NB distributions. To determine the adequate error structure, Poisson is 

usually assumed initially and the parameters of the distribution are estimated, with the dispersion 

parameter „ calculated as: 

 
„

ὖὩὥὶίέὲ ὢ

ὲ ὴ
 (2.12) 
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Where ὲ is the number of observations and ὴ is the number of parameters in the model. The 

ὖὩὥὶίέὲ ὢ  is expressed mathematically as: 

 
ὖὩὥὶίέὲ ὢ  

ώ Ὁɤ

ὠὥὶὣ
 (2.13) 

Where: 

ώ : observed mean collision frequency at location i over a specific time period 

ὠὥὶὣ  : variance of the observed mean collision frequency at location i 

Ὁɤ  : expected mean collision frequency for location i as obtained by the CPM  

If the value of the dispersion parameter „ is equal to 1.0 or lower, the Poisson assumption is 

valid, and if it is greater than 1.0 than a NB error structure would provide a better fit, as the data 

has a greater dispersion than could be explained by using the Poisson distribution [77] [38] [46]. 

 

2.6.3 Selection of Explanatory Variables 

While many factors can influence collision occurrence, not all of them are appropriate as 

explanatory variables in a CPM. Explanatory variables in the same model must be independent 

(not correlated). The recommended method by Sawalha & Sayed (2006) for adding independent 

variables is a forward stepwise procedure: 

1. Variables are added one by one and their significance is tested, beginning with variables 

representing exposure; 

2. Three tests must be performed to test the significance of each particular variable: 

¶ T-stat of the variable must be significant at the 95% confidence level (t-stat higher 

than 1.96) 

¶ The sign (i.e. +/-) of the variable must be logical 
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¶ The addition of a variable should cause a significant drop in the value of the scaled 

deviance (SD), at a decrease greater than ὢȢ ȟ = 3.84 at a 95% confidence level [39] 

Once the variable meets the criteria, it can remain in the model. The next variable is then added 

to the model and tested for significance, until there are no more variables left to evaluate [47]. 

 

2.6.4 Evaluation of Goodness of Fit 

The goodness of fit measures how well the model predicts or fits the observed collision 

data. The typical quantitative methods of assessing goodness of fit are: the ὖὩὥὶίέὲ ὢ  

(described above), the scaled deviance (SD) and the shape parameter ‖, and follows 

methodology set out by [77] [39]. If the error structure is Poisson distributed, then the SD is 

calculated as: 

 
ὛὈ ς ώÌÎ

ώ

Ὁὣ 
 (2.14) 

If the error structure is NB distributed, the SD is calculated as: 

 
ὛὈ ς ώÌÎ

ώ

Ὁὣ 
ώ  ‖ÌÎ

ώ  ‖

Ὁὣ ‖ 
 (2.15) 

 

A model with a good fit will have the SD and the ὖὩὥὶίέὲ ὢ  less than the ὢ  distribution value 

with ὲ ὴ ρ degrees of freedom at a 95% confidence level [38]. For the shape parameter ‖, 

there is no minimum value recommended, but previous research of CPMs has found ‖ to be 

usually higher than 1.0 [78]. 
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2.6.5 Outlier Analysis 

When developing macro-level CPMs, the models may sometimes not meet one or more 

of the goodness of fit criteria. This could be due to extreme values, called outliers, which exist 

because of errors in the data collections or because data points can be atypical. The outlier 

analysis is a procedure to remove the outliers from the dataset to improve the fit of the models. 

The methodology is based on the Cookôs Distance (ὅὈ) as described by [79] [39], in which the 

higher value for a given observation ὅὈ, the stronger the influence on the model. 

 

 
ὅὈ  

Ὤ

ὴρ Ὤ
ὶ  (2.16) 

Where: 

Ὤ : leverage value 

ὶ : standardized residual of point i, calculated as 

ὶ
ώ ώ

ρ Ὤὠὥὶώ

ὖὙ

ρ Ὤ
 

ὖὙ : the Pearson Residual 

ὴ : the number of parameters 

The Pearson Residual (ὖὙ) reflects how well or poorly the model fits the Ὥ  observation, and Ὤ 

reflects how far the data is from the rest of the data points. The methodology for removing 

outliers involves: 

1. Calculating CD for all points and sort the data in descending order according to the CD 

values; 

2. Removing the point with the highest CD value; 
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3. Recalculating the CPM model but with the ‖ value from the pervious model; 

4. If the SD change is at least ὢȢ ȟ = 3.84 at a 95% confidence level then the model is re-

estimated producing new parameters, including new ‖ and new ὅὈ for all remaining 

points; and, 

5. Repetition of the procedure until the change in SD becomes less than ὢȢ ȟ = 3.84 at a 

95% confidence level [38]. 

When the last outlier is removed from the dataset, the model parameters, including ‖, are re-

estimated for the final time [47]. 
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Chapter 3: Methodology 

This chapter describes the methodology used in this research. There are three main 

components: data extraction, macro-level CPM development, and application to macro-reactive 

black spot programs. Figure 1 below provides an outline of this methodology. 

 

Figure 1: Methodology outline 

3.1 Data 

As described in Chapter 2, the quality and quantity of data is critical to developing 

accurate and reliable statistical models. Previous recommendations as described in the literature 

on the effective data extraction process have been followed to achieve best results for this thesis. 

The following sections describe the geographic scope of the data, the aggregation approach, data 

sources, quality issues and the final model development process. 

 

3.1.1 Geographic Scope 

The data extracted for model development is all within the geographic area of the City of 

Vancouver (COV), within the Province of British Columbia, Canada. The land area of the city is 

about 115 square kilometers. In 2011, the year of this studyôs focus, the COV population totaled 

about 600,000 residents, dwelling in almost 265,000 households. Land area in the COV is dense 
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and urban, with an average population density of 5,249 persons per square kilometer [80]. The 

COVôs cycling network in 2011 was composed of about 240 kilometers of separated bike lanes, 

painted bike lanes, local street bikeways and shared use lanes; as shown below in Figure 2 [81]. 

In 2011, cycling accounted for approximately 4.4% of trips to work in the COV [24]. 

 

Figure 2: City of Vancouver bicycle routes 

 

3.1.2 Aggregation 

The aggregation units used for this thesis were based on 134 traffic analysis zones 

(TAZs) used in TransLinkôs EMME/2 transportation planning model. This macro-level 

aggregation was chosen after the consideration of the research objective, geographic scope, data 

availability and computational limits. The TAZs have been developed at the ideal size to keep 

population and employment densities at uniform levels and ensure adequate data in each zone for 

guaranteed goodness of fit. This level of aggregation was chosen because the TAZ boundaries 
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overlap with both census tracks and municipal boundaries, allowing for easy data integration of 

current and future demographic data and transportation demand [21]. The data was aggregated to 

TAZs to allow for the development of macro-level CPMs, which are traditionally performed at 

the zonal level. Using zones allows for the comparison of bicycle network and safety indicators 

between the various TAZs to identify CPZs. Figure 3 shows the level of aggregation, 

representing the cityôs 134 TAZs. 

 

Figure 3: City of Vancouver Traffic Analysis Zones 

 

3.1.3 Sources 

The list of variables used in this thesis, along with summary statistics is presented in 

Table 3.1. The data was extracted and assembled from the following sources: 

1. The Metro Vancouver regional transportation authority, TransLink, provided geocoded 

files of TAZs, as well as road, transit and bicycle networks from the year 2013. In 
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addition, TransLink provided EMME/2 transportation model outputs consisting of travel 

demand (vehicle and transit kilometers travelled, average zonal speed, average, zonal 

congestion and transportation mode split), as well as socio-demographic and land use 

data for the base year 2011. 

2. City of Vancouver (COV) provided exposure and infrastructure variables such as number 

of signals from their most recent Open Data catalogue, accessed in late 2015.  The 

exposure variable total ñAAAò bicycle kilometers refers to the total kilometers of bicycle 

network that is classified as comfortable and safe for users of All Ages and Abilities 

(AAA). This classification is typically found for bicycle facilities that are classified as 

separated bike lanes or off-street paths.  

3. The Digital Road Atlas (DRA) was used for intersection data for the base year 2011. The 

DRA provides a singular and authoritative source of road data for the province of British 

Columbia [82]. The following Figure 4 shows the large number of intersections in the 

COV accessed from the DRA.  
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Figure 4: City of Vancouver intersections 

4. AADT bicycle exposure data was acquired from the COVôs bicycle count volume data 

for the years 2010 and 2011, which was a previously developed comprehensive database 

of bicycle volume data obtained from the expansion of temporary and permanent bicycle 

counts, from former research [73]. The bicycle network routes for which bicycle volume 

was collected are shown in the following Figure 5. 
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Figure 5: Annual Average Daily Traffic (AADT) in the City of Vancouver 

5. The Insurance Corporation of British Columbia (ICBC), the provinceôs public automobile 

insurance company delivered geocoded files of bicycle collision claims in the COV for 

the years of 2009, 2010 and 2011 shown in the following Figure 6. Three years of 

collision data was used to decrease the randomness bias and quantify the relatively 

uncommon bicycle collision data [21]. The availability of geocoded insurance claim data 

centralized from ICBC was considered a great advantage to overcoming any potential 

incomplete and unreported collision data problems [38]. 
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Figure 6: ICBC data on bicycle-vehicle collisions from 2009-2011 for the City of Vancouver 

Potential explanatory variables were then grouped into themes of: 

¶ Exposure variables related to bicycle and vehicle kilometers travelled, and therefore 

collision probability; 

¶ Network variables related to the transportation road network; and, 

¶ Socio-economic and commute preference variables. 

Table 3 presents a list of explanatory variables and their definitions and summary statistics.  
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Table 3: Explanatory variables and summary statistics 

Included 

Variables 

Variable 

Symbol 
 Derivation Units  Year Source 

Vancouver 

Total 

Zonal 

Averag

e  

Standard 

Deviation 

Exposure 

Bicycle 

Kilometers 

Traveled 

BKT Modeled km 2011 COV 140401.15 1047.77 2109.96 

Total "AAA" 

Bicycle 

Kilometers 

AAAKM  Measured km 2015 COV 78.64 0.59 1.26 

Collisions 

Total Bicycle 

Collisions over 

3 years 

TB3 Measured cols. 
2010-

2013 
ICBC 1704 12.72 13.49 

Socio-demographic and Commute 

Population POP Modeled pop 2011 
Trans-

Link 
626867 4678.11 2648.33 

Total 

Employment 
EMP Modeled jobs 2011 

Trans-

Link 
406185 3031.23 3337.34 

Household 

Density 
HHD Modeled hh/Ha 2011 

Trans-

Link 
275899 2058.95 1225.99 

Commercial 

Land Use 
COM Measured m2 2015 COV 

4896105.71

7 
36538.1 45152.6 

Total 

Commuters 
TCM Modeled 

comm

. 
2011 

Trans-

Link 
123512.81 921.74 413.46 

Network 

Signal Density SIGD Measured sig/Ha 2015 COV 19.12 0.143 0.185 

Intersection 

Density 
INTD Measured int/Ha 2011 DRA 99.648 0.744 0.337 

Bus Stops BS Measured stops 2015 
Trans-

Link 
1893 14.127 8.159 

Percentage of 

Residential 

Street 

Kilometers 

RPKM Measured % 2015 COV - 56.444 30.635 

Total Arterial 

Street 

Kilometers 

AKM  Measured km 2015 COV 285.294 2.129 1.395 

Percentage of 

Park Area 
PMP Measured % 2015 COV - 7.695 12.75 

 

 

3.1.4 Quality Issues 

A few data issues were faced when extracting and preparing the data for model 

development. These issues include the following. 
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3.1.4.1 Bicycle Collision Data 

Despite the severity and societal burden of bicycle collisions, reported bicycle-vehicle 

collisions are rare events. During the three-year time period data was collected, approximately 

only 1.0% of all reported motor-vehicle collisions to ICBC involved cyclists [23], since incidents 

such as non-injurious or non-property damaging collisions may have gone unreported. In 

addition, the collision reporting process is typically based on the subjective observations by 

witnesses and police reports, which is self-reported by those involved [17]. The collision records 

therefore may be incomplete and lack accurate information, causing errors regarding the spatial 

location of the collision and their aggregation into TAZs. ICBC has attempted to solve this issue 

by geocoding collision claims as either mid-block or intersection on road centrelines, decreasing 

precision and addressing potential error by a ñsplit the differenceò geographic assumption [38]. 

 

3.1.4.2 Boundary Effects 

When analyzing urban form, using aggregation to the traffic analysis zone can be 

problematic because boundaries tend to be on major transportation corridors and intersections. 

Due to the aggregation of the data into TAZs, assumptions had to be made concerning the 

influence of the aggregation grid choice on the location of collisions on a zone boundary. It has 

been observed in previous research that collisions located near zone boundaries may have 

influence in multiple zones [83]. In addition, the geographic scale and size of the TAZs can 

impact data homogeneity [38]. This thesis assumed that collision data geo-coded near zone 

boundaries has an influence on adjacent zones and proceeded with a method to assure that 

collisions are representative for each TAZ. The methodology to deal with the collision boundary 
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effects followed work by previous researchers to use exposure ratio methods to aggregate 

boundary date into adjacent zones [84]. Collisions were aggregated to each zone according to the 

BKT (leading exposure variable) ratio between adjacent zones. 

 

3.1.4.3 Multiple Sources 

This thesis integrated geocoded data from several years because the data was acquired 

from multiple sources. The highest quality vehicle exposure (VKT) and bicycle exposure 

(AADT) data available was for 2011, which was therefore determined as the base analysis year 

for this thesis. This was supported by the ICBC bicycle collision data existing for the years 2009, 

2010 and 2011. Due to the unavailability of historical data, TransLink provided cycling 

infrastructure data for the year 2013. The most recent COV Open Data catalogue provided other 

road infrastructure data for the year 2015. The time discrepancy between 2011 to 2015 for 

vehicle infrastructure variables were assumed to be irrelevant for this thesis because the COV 

vehicle infrastructure has seen few changes in the past three years. In terms of bicycle 

infrastructure, the changes between 2011 and 2013 may cause a few inconsistencies between 

data sources. However, these bicycle infrastructure changes have been relatively few, and this 

thesis assumes that these differences due to several years of data can be considered negligible.  

 

3.2 Model Development 

After candidate variables have been chosen, and data has been extracted and aggregated 

to TAZs, the data preparation is then complete and ready for model development. The model 

development methodology followed the following procedures described below in the selection of 

explanatory variables and GLM regression. 
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3.2.1 Selection of Explanatory Variables 

Before developing the models, the appropriate explanatory variables need to be chosen in 

a stepwise procedure, as described in research by Sawalha & Sayed (2006). In this technique 

each variable is added one by one, testing the change in goodness of fit as the model is 

constructed. As recommended in previous research, the first variable tested in each model was 

the exposure variable, because of its leading prediction influence since no collisions can occur 

without exposure [39]. In this thesis, the exposure variables used was bicycle kilometers 

travelled (BKT), for which the volume was represented by the bicycle Annual Average Daily 

Traffic (AADT). This basic model acts as a reference model, serving as a base for generating a 

new model containing additional variables. The next stage of the process involved developing a 

new reference model that contains the exposure variable and an additional explanatory variable 

that causes the maximum drop in scaled deviance, with remaining variables added step by step 

following the same method [39]. 

To choose additional candidate variables to build multiple CPMs, the reference (exposure 

only) CPM was used to identify Collision Prone Zones. CPZs are defined as zones that show a 

higher potential for collisions compared to a specified norm. Due to the randomness and small 

size of the bicycle collision dataset, statistical techniques accounting for randomness need to be 

applied to establish CPZs. Similar to previous techniques, an Empirical Bayes (EB) methodology 

using CPMs is used to identify the CPZs [6] [38] [40]. The EB refinement method can be used to 

identify CPZs using the process as described in Section 2.2. In additional to local zone collision 

history, the zonal Ὁɤ and Var[Ὁɤ] are calculated to provide a location-specific prior 

distribution of collisions. With this information the zonal EB safety estimate is calculated. The 
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additional candidate variables to be added to the reference model were systematically added 

from the list in Table 3 under Section 3.1.3. Variables were chosen from data categories 

including socio-demographic data, exposure data, TDM data and network infrastructure data. 

Once chosen, the decision to retain a variable in the model was based on the criteria as described 

in Section 2.6.3. 

 

3.2.2 Addition of Variables to Bicycle Collision Prediction Models 

The model form for the development of the Collision Prediction Models (CPMs) was 

chosen according to available data and previous research as described in Section 2.6. The model 

form that was used for the developed of CPMs was: 

 Ὁɤ ὥὤ ὩВ  (3.1) 

Where: 

E(ɤ : predicted collision frequency 

ὥȟὥȟὦ : model parameters 

ὤ : external exposure variable 

ὢ : explanatory variables 

A log-linear transformation was then completed by using a logarithmic link function, using 

Generalized Linear Modelling (GLM), as shown in previous research [38], transforming 

Equation 3.1 into: 

 
ὒὲὉɤ ὒὲὥ ὥὒὲὤ ὦὢ (3.2) 

The CPMs developed were based on the City of Vancouverôs (COV) 134 TAZs, using the 

following data: 
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¶ Ὁɤ was represented by the number of bicycle collisions, TB3. The Insurance 

Corporation of British Columbia (ICBC) provided the data for the variable TB3 for three 

years (2009, 2010 and 2011) (see section 3.1.4). Automobile collisions involving bicycles 

were the collisions captured in this variable, as ICBC only reports collisions involving a 

motor vehicle. It would have been interesting to have collisions involving bicycles and 

other road users or collisions involving only one cyclist, but this data was not available 

because it is not reported to ICBC. As well, the number and severity of these collisions is 

likely to be small. 

¶ The exposure variable ὤ, in this research, refers to bicycle kilometers travelled BKT. The 

exposure variables were obtained from COV AADT bicycle repository for the years 2010 

and 2011 and the TransLink EMME/2 transportation model for the base year 2011 (see 

section 3.1.4). This variable is critical to the model, since at the level of zero exposure 

collisions must also remain zero. 

¶ The explanatory variables ὢ, consist of multiple bicycle-related indicators that are 

considered likely to influence collision occurrence. The list of potential explanatory 

variables tested in the CPMs were grouped into two categories: 

1) Socio-demographic: refers to population information, commuter characteristics 

and land use; and, 

2) Network: refers to citywide physical infrastructure characteristics. 

Summary statistics of the explanatory variable data can be found in Table 3, Section 3.1.3. 

 The CPMs were developed following the GLM approach as suggested in previous 

research [77] [21] [20] [38] [47], and as described in Section 2.6 under Literature Review. The 

methodology considered the following: 
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¶ Assumed a Negative Binomial error structure. 

¶ Procedure for selection of model variables was stepwise, developing models by adding 

one variable at a time and testing the goodness of fit for each added variable [39]. 

¶ Variables chosen were kept in the model based on three conditions: 

i) The parameter t-statistic is significant (t >1.96 at a confidence level of 95%); 

ii)  The addition of a new variable resulted in a drop of SD for the 95% confidence level 

(>3.84); and, 

iii)  The variable showed a low correlation with wither independent variables in the 

model. 

¶ Once variables have been chosen, the model fit is assessed using the ὖὩὥὶίέὲ ὢ  and the 

scaled deviance SD, described further in Section 2.5. 

¶ Finally, model fit is improved by performing an outlier analysis based on Cookôs 

Distance CD method, described further in Section 2.5. 

The final CPMs were developed for the COVôs 134 TAZs, for exposure, socio-demographic and 

network groups of indicators. 

 

3.2.3 Application of CPMs to Macro-Reactive Black Spot Programs 

Macro-reactive black spot analysis uses the individual TAZ as a unit of analysis instead 

of an intersection or road segment for micro-reactive analyses. Macro-reactive guidelines 

generally follow the traditional reactive methods, however there are some differences in 

methodology as indicated in Figure 7 by Lovegrove & Sayed (2007) and Lovegrove (2007) 

below [38] [40]: 
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Figure 7: Comparison between micro- and macro-reactive Black Spot Programs [38] [40] 

The CPMs were developed in this study with variables chosen to meet the needs of the macro-

reactive black spot safety evaluation. The scope of this citywide bicycle safety study was to 

identify Collision Prone Zones (CPZs) and variables that may be hindering bicycle safety.  

 

3.2.3.1 Identification and Ranking 

The enhanced EB method using CPMs to identify black spots is based on research set out 

in Sawalha & Sayed (1999) [77], generally following the EB method described in Higle & 

Witkowski (1988) [85] with modifications to use CPMs and is described in detail in Section 2.2. 
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To identify and rank black spots with macro-level CPMs, there must be some adjustments made 

to the conventional reactive method. 

1. The observed local collision history (count) is based on the zonal aggregate, providing 

the first observational clue on safety. 

2. The zonal Ὁɤ and ὠὥὶ Ὁɤ are calculated to provide the location-specific prior clue to 

calculated the zonal EB safety estimate as described in Section 2.2. 

3. Due to multiple CPMs, there will be several EB safety estimates for each zone resulting 

in a majority rule when determining a CPZ. 

Finally, the calculated zonal Ὁɤ and EB safety estimates would differ for each zone resulting 

in differences in zonal rankings. This can be resolved by using a modified ranking approach, by 

summing each zones PCR rankings across all macro-level CPMs to develop a total ranking score 

for each CPZ, as described in Section 2.2. This score will denote which CPZs are most 

frequently ranked as the least safe and are in need for a diagnosis [40] [38]. 

 

3.2.3.2 Diagnosis 

Once the CPZs have been identified and ranked for treatment, the diagnosis stage to find 

the cause of the safety problem is begun. Safety issues for CPZs can be diagnosed using a 

methodology similar to the conventional approach. As with this approach, diagnosis begins by 

first looking at an overrepresentation of collision patterns: clusters of particular collision types. 

Using macro-level CPMs method to determine CPZs, an additional indicator can be used: trigger 

variables from each model that are hypothesized to contribute to the identification of the zone as 

a CPZ.  To identify trigger variables, the value of each variable in the top ranked CPZs is 

compared with the value of regional averages to understand which variables are triggering CPZ 
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identification. A regional average is the mean of the specific variable value for all zones in the 

study area. The regional COV statistics (average and standard deviation) for variables used in 

this study are shown in Table 3. The variable values that are found to be significantly different 

than the regional statistics are identified as trigger variables. This indicator can be used together 

with observations of collision patterns and site visits to understand the overall safety issues in 

each CPZ [40]. The identification of the zonal safety problem is an important step to realize 

potential suitable remedies. 

Table 4: Regional statistics in the City of Vancouver for included variables 

Included Variables 
Variable 

Symbol 

Zonal Regional Statistics 

Average  
Standard 

Deviation 

Exposure 

Bicycle Kilometers Traveled BKT 1047.77 2109.96 

Total "AAA" Bicycle Kilometers AAAKM  0.59 1.26 

Collisions 

Total Bicycle Collisions over 3 years TB3 12.72 13.49 

Socio-demographic and Commute 

Population POP 4678.11 2648.33 

Total Employment EMP 3031.23 3337.34 

Household Density HHD 2058.95 1225.99 

Commercial Land Use COM 36538.10 45152.60 

Total Commuters TCM 921.74 413.46 

Network 

Signal Density SIGD 0.143 0.185 

Intersection Density INTD 0.744 0.337 

Bus Stops BS 14.127 8.159 

Percentage of Residential Street 

Kilometers 
RPKM 56.444 30.635 

Total Arterial Street Kilometers AKM  2.129 1.395 

Percentage of Park Area PMP 7.695 12.750 
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3.2.3.3 Remedy 

To match the safety issue with a suitable zone-wide safety remedy, a strategic zonal 

safety analysis must be conducted when using macro-level CPMs. Examples of possible 

remedies could be generated from considering variable theme and diagnosis results, whether the 

variable theme is network (i.e. number of signalized intersections could be associated with 

increased collisions), TDM (i.e. increased vehicle commuters could be associated with increased 

collisions), or socio-demographic (i.e. increased populations is associated with decreased 

collisions) [40]. After identifying the zonal safety problem using the methodology above, zonal 

characteristics were analyzed at a micro scale to identify possible remedies. This included factors 

such as the number of collisions, the quality of the bicycle infrastructure, the topography and the 

amount of arterials in each zone, for example. Finally, a list of potential bicycle safety 

countermeasures were analyzed and applied to each zone using engineering judgement. 
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Chapter 4: Results and Discussion 

4.1 Approach and Results 

4.1.1 Development and Selection of Models 

There were 10 macro-level CPMs developed for the purpose of conducting a black spot 

case study for the City of Vancouver. The intention was to follow the methodology as described 

in Sections 2 and 3 to identify and then rank CPZs, diagnose safety issues and recommend 

remedies for CPZs in the COV. The collision prediction models developed used exposure, socio-

demographic, TDM and network variables as indicators, along with Bicycle Kilometers 

Travelled (BKT) as the leading exposure variable. Table 5 presents the models that predict total 

bicycle collisions and their goodness of fit summary statistics. Most models presented showed 

explanatory variables as significant at a 95% confidence level, except for the explanatory 

variables of total ñAAAò bicycle kilometers (AAAKM), total commuters (TCM) and percentage 

of residential street kilometers (RPKM), which were significant at a 90% confidence level. As 

expected, the models showed that increased collisions were positively associated with increased 

exposure variable BKT. This confirms the intuitive expectation that more bicycle exposure 

contributes to bicycle-vehicle collisions. However, the exponent of BKT is less than 1.0, 

indicating that the rate of increase of bicycle collisions reduces as more cyclists use the network. 

This confirms the safety in numbers concept, which states that an increase in people cycling will 

result in an increase in safety. 

Using BKT as the leading exposure variable, the models were developed among the four 

themes of exposure, TDM, socio-demographic and network. The exposure variable total All 

Ages and Abilities (AAA) kilometers (AAAKM) was positively associated with collisions. The 

TDM and socio-demographic variables total commuters (TCM), total employment (EMP), 
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household density (HHD), commercial land use (COM), and population (POP) were also found 

to be positively associated with collisions. The network variables signal density (SIGD), 

intersection density (INTD), bus stops (BS), percentage of residential street kilometers (RPKM), 

and arterial street kilometers (AKM) were all found to be positively associated with collisions, 

while percentage of park area (PMP) was found the be negatively associated with collisions. 

Table 5: Collision Prediction Models and their goodness of fit summary statistics 

Model Form k df SD 

Pear-

son 

x^2 

x2 

0.05, 

df 

p-value 

Exposure 

0.1843BKT̂ 0.6438 2.25 131 143 125 159 BKT <.0001 

0.1425BKT̂ 0.7167*exp(-

0.1213AAAKM + -0.0224PMP) 
2.80 129 143 146 157 

BKT <.0001; AAAKM 0.0642; PMP 

0.0007 

Transportation Demand Management 

0.1566BKT̂ 0.6248*exp(0.0003TCM) 2.34 130 143 127 158 BKT <.0001; TCM 0.0672 

Socio-Demographic 

0.2745BKT̂ 0.5099*exp(0.0001COM 

+ 0.0001EMP) 
2.99 129 144 121 157 

BKT <.0001; COM <0.0001; EMP 

0.0005 

0.1461BKT̂ 0.5358*exp(0.0001EMP 

+ 0.0003HHD) 
3.40 129 144 126 157 

BKT <.0001; EMP <0.0001; HHD 

<0.0001 

0.0816BKT̂ 0.6336*exp(0.0001POP 

+ 0.6203INTD) 
2.57 129 141 124 157 BKT <.0001; INTD 0.0031; POP 0.001 

Network 

0.1068BKT̂ 0.5900*exp(1.6143SIGD 

+ 0.0409BS) 
3.12 129 142 136 157 

BKT <.0001 SIGD <0.0001; BS 

<0.0001 

0.1776BKT̂ 0.6069*exp(-0.0263PMP 

+ 0.1851AKM) 
3.24 129 143 139 157 

BKT <.0001; PMP <0.0001; AKM 

<0.0001 

0.083BKT̂ 0.6094*exp(0.6443INTD 

+ 0.034BS) 
2.74 129 142 118 157 

BKT <.0001; INTD 0.0018; BS 

<0.0001 

0.1835BKT̂ 0.6342*exp(-

0.0040RPKM + 0.3645INTD) 
2.40 129 142 121 157 

BKT <.0001; RPKM 0.0841; INTD 

0.0879 

 

Macro-reactive guidelines as described in Sections 2 and 3 were followed for the black spot case 

study due to the citywide scope of this thesis to evaluate 134 TAZs at a planning-level safety 

analysis. All variables that were chosen for the models were considered potential trigger 

variables for bicycle collisions from the four variable themes. Since the task was in part to 
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identify and rank CPZs, all model groups that were found to be significant using multiple 

variables were considered.  

4.1.2 Identification and Ranking 

The CPMs were used to first estimate the expected location specific collisions for each 

TAZ, ὉɤȢ This clue, together with the observed zonal collision count over three years resulted 

in 10 EB safety estimates for each zone (one from each of the 10 models). Using the 

methodology described in Section 2.2 for the identification and ranking of black spots, each of 

the 10 CPMs identified a range from 7 to 20 collision prone zones at the 99% confidence level. 

The Ὁɤ was used as the reference group norm for comparison to the EB safety estimate to 

identify the Collision Prone Zones (CPZs) that have the highest potential collision reduction 

(PCR). The ranking of PCR was based on the difference between expected and observed 

collision frequency. Using a modified ranking technique described in Section 2.2, which 

considered the zonal ranking of all CPMs, the zones most frequently ranked with high PCR were 

further analyzed for diagnosis and remedy. A list of the top 7% of all top-ranked zones is shown 

in Table 6. TAZ 3420 was disqualified from the analysis due to a zero value for the exposure 

variable, BKT resulting in the inability to predict collisions and calculate Ὁɤ. 
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Table 6: A list of the top 7% of CPZs rankings (top ten) 

RANK 
EXP 

BKT 

EXP 

AAAKM 

PMP 
TDM  
TCM 

SOCD 
COM 

EMP 

SOCD 
EMP 

HHD 

SOCD 
INTD 

POP 

NET-

WORK  
SIGD BS 

NET-

WORK  
PMP 

AKM  

NET-

WORK  
INTD BS 

NET-

WORK  
RPKM 

INTD 

1 3160 3160 3160 3640 3160 3160 3160 3160 3160 3160 

2 3640 3640 3640 3200 3640 3460 3640 3640 3640 3640 

3 3460 3460 3460 3460 3590 2290 3200 3200 2290 3460 

4 2290 2290 2290 3160 3470 3590 3460 3460 3460 3590 

5 3590 3590 3590 3590 2280 3470 3590 3590 3590 2290 

6 3470 3070 3470 2090 3000 2160 3070 3100 3070 3470 

7 2160 2090 2160 2290 3330 3000 2090 3070 2090 3170 

8 3170 3000 3170 3480 2290 2150 3470 3000 3470 3000 

9 3010 3470 3330 3170 2160 3330 3170 3470 3100 3010 

10 3490 2160 3600 3470 3510 3640 3480 3170 3170 3490 

 

The geographic locations of the top 10 ranked CPZs are shown for each of the ten CPMs 

is given in Appendix A, to spatially compare the similarities and differences between the models. 

The top ten zones were ranked by a gradient colour scheme: red for most severe top three zones, 

orange for the fourth to sixth severe zones, and yellow for the seventh to tenth severe zones. An 

example of the reference model, which used only BKT as the exposure explanatory variable, is 

shown in Figure 8.  
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Figure 8: Top ten CPZs for the exposure model using BKT 

The model groups showed consistency by providing relatively similar top CPZs identification 

and ranking, with a small variability. With this ranking technique, the three areas with CPZs that 

scored the worst were then carried forward for diagnosis to identify safety problems and 

potential solutions.  

 

4.1.3 Diagnosis and Remedy 

The top ten zones that were ranked collision prone were analyzed to identify the safety 

problems using two indicator techniques. First, average bicycle-vehicle collision frequencies for 
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each CPZ were compared to the regional average of 12.7 collisions over three years shown in 

Table 3.2. All top ten severe CPZs analyzed across the ten CPMs developed showed collisions 

frequencies higher than the regional average of 12.7 collisions per zone over three years. Second, 

the values of each CPMôs top ranked CPZ variables were compared with their corresponding 

regional averages (also listed in Table 3) to understand which variables were triggering the 

collision prone ranking using a one sample studentôs t-test with ὲ ρ degrees of freedom. 

 

 
ὸ
ὼӶ‘

ίЍὲϳ
 (4.1) 

Where: 

ὸ : t-statistic 

ὼӶ : sample mean 

ί : sample standard deviation 

‘ : specified value 

ὲ : sample size 

These trigger variables, along with the collision frequencies identified the zonal safety 

issues. Across the models, the results show that collisions are associated with a large variability 

(defined as either low or high compared to the regional average) of the total All Ages and 

Abilities (AAA) kilometers (AAAKM), however the top most severe CPZs are associated with 

low AAAKM. Across the models, collisions are associated with a high variability of the TDM 

variable total commuters (TCM), as well as the socio-demographic variables of total 

employment (EMP), household density (HHD), percentage of commercial land use (COM), and 

population (POP). The most severe CPZs are found to be associated with high COM and EMP. 
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For infrastructure variables, collisions are associated with a large variability of intersection 

density (INTD), bus stops (BS), arterial street kilometers (AKM), and percentage of park area 

(PMP), but did not have an association with variability from the regional averages of the 

variables signal density (SIGD) and percentage of residential street kilometers (RPKM). The 

most severe CPZs found collisions to be associated with a low park area percentage, a high 

number of bus stops, a large amount of arterial streets and a high intersection density.  

Subsequently, the top three collision prone areas were carried forward for diagnosis of 

safety problems and analysis of potential remedies. The three areas under analysis consisted of 

five CPZs: 3160, 3200, 3460, 3640 and 2290 (in the Mount Pleasant and Downtown 

neighbourhoods of the City of Vancouver). Due to data availability, the analysis base year used 

was 2011. Since 2011, the City of Vancouver has constructed additional cycling infrastructure 

such as local street bikeways, painted bike lanes, marked shared lanes and separated bike lanes 

(see Figure 9), as well as implemented traffic calming and spot improvements [86]. All 

infrastructure changes were taken into account in the detailed diagnosis and remedy for each 

CPZ. 
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Figure 9: New cycling infrastructure built in the City of Vancouver [86] 

The detailed diagnosis was followed by a strategic remedy analysis at the micro-level, including 

infrastructure treatments to improve bicycle safety. The following safety countermeasures that 

could be applied to the five diagnosed CPZs are described in Table 6. These infrastructure 

treatments are intended to remedy the trigger variables of arterial high volume roads and high 

intersection density. The remedies are intended for potentially high bicycle-vehicle conflict 

locations, such as intersections. 
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Table 7: Bicycle safety countermeasures 

Remedy Description Photo 

All Ages and Abilities 

("AAA")  

A general term referring to designing bicycle 

infrastructure for people of all ages and 

abilities, typically separated bicycle lanes for 

high vehicle volume streets and traffic 

calming local street bikeways for low 

volume streets. 

  

Curb Buldges and 

Traffic Calming 

A traffic calming measures such as 

narrowing road at intersections to improve 

crossing safety for vulnerable road users 

(pedestrians and cyclists) or restricting 

vehicle access. 

  

Bicycle Refuges 
Provides safety to bicycle crossings where a 

median continues through the intersection. 

  

Elephant's Feet 

Bicycle crosswalk paint markings usually 

applied parallel to or part of a pedestrian 

crosswalk. 

  

Bike Boxes 

Painted at an intersection to designate an area 

where cyclists may wait ahead of motor 

vehicles at a red signal to get into position 

for go before motor vehicles when the signal 

turns green. 

  

Bicycle Signals 
A separate signal phase to allow bicycles to 

cross across high volume and speed traffic. 
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Remedy Description Photo 

Protected Intersections  

An intersection design treatment so that both 

cyclists and pedestrians are separated and 

protected from vehicles. Turning phases are 

also protect bicycles and pedestrians from 

vehicles. 

  

Coloured Bicycle Lanes 

Installed across high conflict vehicle-bicycle 

crossing zones to caution both drivers and 

cyclists. 

  

 

4.1.3.1 Collision Prone Zones 3160 & 3200 

Collision prone zones 3160 and 3200 are two adjacent zones (see Figure 10 showing bike 

routes in green and bicycle-vehicle collisions as red dots) bordered by West 1st Avenue in the 

north, Cambie Street in the west, West 16th Avenue in the south and Main Street in the east. The 

area has multiple bike routes, represented in green, including local street bikeways on 5th 

Avenue, 10th Avenue, Columbia Street, Ontario Street and Yukon Street, marked shared lanes on 

Main Street, painted bike lanes on 7th Avenue and Yukon Street and separated bike lanes coming 

off of Cambie Street Bridge. Since 2011, there has been a change to CPZ 3160 with a painted 

bike lane on Yukon Street from 2nd Avenue to 10th Avenue installed in 2012. 

The CPZ 3160 (north zone from West 1st Avenue to West Broadway) was identified as 

the top most severe collision prone zone using the EB safety estimate approach for the exposure, 

TDM, network and most socio-demographic model groups. CPZ 3200 (south zone from West 

Broadway to West 16th Avenue) was found to be in the top three severe collision prone zones for 
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one socio-demographic and two network model groups. From all the zones in the City of 

Vancouver, the CPZ 3160 had the highest number of bicycle vehicle collisions over three years, 

at 78, while CPZ 3200 had the third highest number of bicycle vehicle collisions over three 

years, at 65. CPZ 3160 showed a higher than average bicycle kilometer travelled, total 

commuters, commercial land use area, total employment, signal and intersection density, bus 

stop density and total arterial street kilometers; and showed a lower than average percentage of 

park area, total ñAAAò bicycle kilometers and household density. Meanwhile, CPZ 3200 showed 

a higher than average commercial land use area, total employment and total arterial street 

kilometers; while also showing a lower than average percentage of park area. 

There were a few clues to road safety problems in the two CPZs that could be gathered 

from observing the land use, trigger variables and bicycle-vehicle collisions spatial 

characteristics. The land use consisted primarily of light industrial in CPZ 3160 and medium 

density residential in CPZ 3200, with commercial uses throughout the two zones, specifically 

along the major transportation corridors of Cambie, West Broadway, Main Streets and West 2nd 

Avenue. These four arterial streets also had high vehicle, truck and transit traffic. All roads 

within these two zones were set in a grid pattern with high intersection density. The bicycle 

volume in both zones was also high due to high density and many bicycle routes. Supporting the 

observed zone attributes, the trigger variables for both zones were found to be: a higher than 

average total commercial land use area, employment and arterial street kilometers, along with 

lower than average percentage of park area. Additionally, CPZ 3160 had a higher than average 

signal and intersection density, as well as a high BKT with a low number of bicycle kilometers 

ranked ñAAAò. The topography in the two CPZs was also found to be hilly, visualized with 1 
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and 10 meter contour lines in Figure 11. Finally, there was a high number of bicycle vehicle 

collisions observed in the two CPZs, primarily at intersections and arterials (see Figure 10).  

These clues suggest that the safety issue may be a result of the land use type, coupled 

with high traffic volume particularly on the arterial routes and high bicycle volume on bicycle 

routes that are classified as painted bike lanes, shared lanes and local street bikeways. These 

types of bicycle routes are typically less safe for cyclists and they are not classified as ñAAAò. 

There were many observed collisions along arterial routes or bicycle routes, areas that had the 

highest bicycle and vehicle volumes. Possible remedies suggested to solve the safety issues in 

these zones include: 

¶ Update existing bicycle routes to be ranked ñAAA,ò by installing separated bike lanes or 

installing traffic calming measures where applicable, depending on vehicle volumes on 

the route. This includes installing future separated bicycle lanes on the busy arterial 

routes of Cambie, Broadway and Main Streets. 

¶ Increase signage along all routes, and install more local street bikeways onto low roads 

with low vehicle volumes to raise driversô attention to cyclists. 

¶ Continue to address intersection safety through bicycle infrastructure spot improvements 

such as curb bulges, bicycle refuges, elephant feet, bike boxes and bike signals, 

especially at high volume intersections. Protected intersections should be considered at 

high vehicle volume locations that also have high bicycle volumes, such as the Cambie 

Street Bridge & 6th Avenue intersection. 
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Figure 10: Collision Prone Zones 3160 (north)  & 3200 (south) showing bike routes and bicycle-vehicle 

collisions 

 

Figure 11: Collision Prone Zones 3160 (north) & 3200 (south) showing topography (1 m pink contour lines 

and 10 m purple contour lines) 














































