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Abstract

To encourage greener cities while reducing transportation impacts sclehae change, traffic
congestionand road safetigsues governmentfiave beeinvesting in sustainable transportation
modes such as cycling. A safe and comfortable cycling environment is critical to encourage
bicycle trips,since cyclistaresubject to greater safety risks and represent the highest share of
severe and fatal roambllisions Traditionally,engineering approaches have addressed road
safety in reaction to existing collision histories. For bicycle collisions, which are rare events, a
proactive approach is moappropriate Thisstudy describethe development diicyde related
macrclevel(i.e. neighbourhood or traffic analysis zone lew@&)lision Prediction Models
(CPMs)and testedhe models as empirical tools for bicycle road safety evaluation and planning.
This studywasunique in its usage of the bicycle expasuariable represented by Bicycle
Kilometers Travelled (BKT) as a lead exposure variable in the models. The-leeer€PMs

that were developed for bicyeleehicle collisions were applied to a case study of the City of
Vancouver at the zonal lev@lhe Mdjectives of the study were to: (1) identify bicycle data safety
indicators, (2) develop bicycle maelevel CPMs using generalized linear regression modeling
(GLM), (3) demonstrate model use by applying them to a case study of the City of Vancouver
through a macrereactive roadafety application, and (4jentify potential safety

counterneasures for the highest ranked Collision Prooees(CPZs) The models were

effective inenhancing traditional road safety initiatives ahehtifying and ranking dangeus

CPZs in the City of Vancouverhe top three collision prone areas were then brought forward
for diagnosis and remedy analysis. Thisecstsidy effectively demonstratéte use of the

models to proactively enhance bicycle safety.
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Chapter 1: Introduction

The transportatiomelated challenges of climate change, traffic congespiohlic health
and road safety are impacting cities worldwide. To encourage greener cities, governments are
prepared to expand sustainable transportation systems for walking, bicycling, public transit, and
car sharing to enable a better balance between private mottwamsgdort and sustainable modes
of transport. In contrast to motor vehicle travel, the public health benefits of active
transportation, such as cycling and walking, are signifidarthe case of bicycle transport, some
key advantagesclude: energy eitiency, low costhealth benefiteand zero emissions, as well
as an effective use of road space and parking. In addition, bicycles are the most efficient and fast
modefor the short and mediurrdistance trips common in urban areas. To encourage active
transportation, policies need to seriously consider the safety of these road users. Sustainable
transportation planningnd desigrthat enables less dependence on single occupancy vehicles
and promotes the safe use of bicycles could be an effective wayidoeaalsustained reduction
in road collision risk, frequency, and severity for cyclists. To emphasize the importance of
bicycle safety research, this introduction will cover the challenges and motivations behind this

important topic.

1.1 Challenges
The socidand economic burdens duertiad collisionsare recognized as a global
problem Accordingtoh e Wor | d He al tltbal Satuy eeport anaocad safetyd read g
traffic injuries are the eighth leading cause of death globally, remaining unaccdptgioat
1.24 million road traffic deaths per ygdt. Current global trends suggest that by 2030 road

traffic deaths will become the fifth leading cause of death unless urgent action if2jaken



Canada is a highly developed country, but despite significant investment in road infrastructure
there are still concerns about road collisidn€anada, the total number of reported motor
vehicle fatalites and injuriesn 2013were 1,923 and 165,305, respectivid), In addition to the
human cost, collisions put a large econobuecdenon society. Transport Canada estimates the
annual cost of total collisions at $62.7 billion for the Canadian ecofmy

Across Canada, cycling is growing in popularity as a daily commuting optiovidpg
a convenient and affordable alternative to the congested roads and crowded transit systems in
urban areapb]. However, inadequate infrastructure and unsafe environments present a threat to
meding sustainable transportation system goélgnerable road users (VRUS), such as
pedestrians and cyclists, are subject to greater safety risks and represent the highest share of
severe and fatal road collisiof§. In British Columbia in 2013, 100% of the 1,500 reported
automobile collisions involving bicycles resulted in an injury or fatality for the cy@JsThis
thesisfocuses on bicycle tissions with motor vehicles, since studies show thathcollisions
are moresevere to the cycli$8] [9]. The safety of cyclists is criticalncebicycle travel has a
higher permile casualty rate than car travel, yet poses minimal risk to other road 1Geita
addition, a study by the Ontario Coroner found that the majority of cydéaths are

preventabld11], making this an important topic of interest.

1.2 Motivations

Safety is key to increasing cycling mode share and is a critical indicator of the
performance of sustainable transpooiaiplans and cycling facilitis]. Advancing
sustainability and safety in active transportation, specifically cycling, are the motivations behind

this thesis. The following sectiowsitlinethe impotance of this topic.



1.2.1 Environmental Concerns

The growing interest in developing multimodal transportation networks is driven by the
increasing awareness of environmental issues, both globally and locally. Significant effort from
urban planners, engineergdashecision makers is required to build a multimodal transportation
system that is not dominated by private vehicles. This is important because despite
improvements in vehicle efficiency and technology, it is simply not sustainable to continue to
plan urbarenvironments solely for the private automobile. Strategies to reduce vehicle travel
through promoting sustainable transportation modes help to conserve energy and reduce
pollution emissions, as well as provide efficiency benefits such as the potentidlite
congestion, roadway and parking costs, vehicle collisions and gdrgwl

A safe and comfortable cycling environment is critical to encourage bicycle trips,
therefore allowing urban areas taluee their carbon footprint, reduce their dependence on fossil
fuels and lower greenhouse gas emissjéhsrhis is becausecreasing the number of
sustainable transpaition users, such as cyclistguld not contribute to air pollution. In British
Columbia, the transportation sector is the leading contributor to greenhouse gas emissions, with
passenger vehicles contributing 39% of the transportatiiated greenhouse gas emissid§.
This is an important statistic, because increasing the mode share of active transportation is
assumed to decrease the amount of people travelling by motorized vehicles. Transportation
planning for bicycle facilitis and improving bicycle safety are emerging areas of research that

have yet to be developed to a level that matches research on vehicular traffic.



1.2.2 Public Health Benefits

Bicycling as a form of active transportation and exercise has the capdo#yebt
public health by reducinthe problems associated wiikart disease, obesity, high blood
pressure, type 2 diabetes, osteoporosis and depression. When cycling is available as a daily travel
mode, substantial public health benefits occur, potentigtyeasingspending on health care by
over $500 per year per person according to a British Columbia [st@dyThe correlation
between active transportation and obesity, for example, has been shown rres@rotind the
world, with nations having a greater mode share of pedestrians, cyclists and transit users also
having lower obesity ratgd44]. Previous research has found that substantial healthitsenef
received from cycling can offset the increase in collision risk, because longevity is found to
increase with active transportatifitb]. Therefore, to benefit public health, it is imperative to

improve road safety for cyclists to decrease risks and encourage cycling for all ages and levels.

1.2.3 Proactive Road Safety Initiatives

Road safety improvement programs can be divided into two categories: reactive (i.e.
responding to road safety problems), angiactive (i.e. taking actions to prevent the emergence
of road safety problems). The traditional reactive road safety improvement programs (RSIPS)
focus on the identification, diagnosis and remedy of colipamone | ocati ons, or
in reactio to observed collision history. Although RSIPs are important and have been proven to
be successful, this reactive program requires a significant collision history to exist before
improvement action is taken. These collistmased approaches rely on dagai¢ally drawn from
collision records, police reports, and insurance cldits The traditional reactive approach to

safety based primarily on collision data has been challenged on several accounts:



1 Attribution: it can be difficult to precisely know the cause and exact situation and
location from information obtained by police and insurance reports, and therefore the
definitive reason of the collision;

91 Data volume: despite the social and economicdmaf road collisions, they are
infrequent rare events, making it challenging to draw statistically stable and significant
inferences from actual collision data;

1 Data qualityand availability the process of reporting collisions is based on subjective
obsevations and withess accounts, and records can be incomplete and lack details, as
well as norinjurious or norpropertydamaging incidents can go unreported; and,

1 Ethical concerns: paradoxicsituation in which the safety analyst strives to observe
eventgthat they are attempting to prevéh].

Using reactive road safety analysis, there is little ability to predict and prevent road safety issues
before their induced costs. Therefore, there is a teetake a proactive approach to address

safety before problems emerge, to complement traditional reactive miigpfisd]. A

proactive approach wdaibe one that addresses road safety as an important factor in the
evaluation of transportation projects at the planning §@@ebefore collisions occur. It is
particularly important to study thefsty of VRUs, as the number of collisions observed is small

but the severity of the collisions on pedestrians and bicyclists is high.

Typically, when implementing transportation investments, decisiaking beginsat the
planning level, when current and future transportation needs are defined by planning scenarios.
The modeled scenario results are quantified and weighted against economic, environmental and
societal impacts. Transportation safety is an importanteziethat should be considered at the

planning level. While economic, environmental or social considerations can be quantified based
5



on a large amount of science and empirical data, the estimation of safety in transportation
planning is still undedevelopnent[19] [21] [22]. Until recently, practitioners lacked the
empirical tools necessary éwaluate road safety proactively. The challenge is for planners,
practitioners and decision makers to plan and design innovative, sustainable and safe
transportation systems. To improve the safety of VRUs, there is a need for empirical tools to

enable theevaluation of the bicycle safety proactively before collisions occur.

1.3 Problem Statement

The study of bicycle safety is important due to the physical vulnerability of cyclists and
the key role that this mode of transportation plays in building sustairdfideent and healthy
communities Challenges facing the study of cycling safety include the fundamental pratflems
reliance on theollision data that has quantity and quality issues and the high cost of bicycle
collisions In the City of Vancouver (CO) for exampleVRUs (pedestrians, cyclists and
motorcyclists) accounted for approximately 3% of road collisions between 2007 and 2013,
however these users accounted for approximately 80% of fatalities during this time period.
Looking towards the futurehe city has a target for zero traffielated fatalitie$23]. This thesis
will apply macrelevel CPMs to the COV as a case study to gtigaly estimate bicycle safety.
The development of these bicygkdated models is feasible and effectivetdue t he ci t yos
growing cycling mode share, expanding bicycle infrastructure and rich databank of bicycle
exposure dataCycling accountedor approximately 4.4% of trips to work in ti@&OV in 2011
[24], the base year of this stydynd the number of people choosing to cycle every year is

growing.



A recent City of Vancouver Cycling Safety Study performed an analysis based on

reported cycling collisions, and identified t
onstreet vehicle parking, midl ock conf l i ct z onwtbkrighttumihgght hook
vehicles, o6l eft cross®d c emafstopundigealized irtersectioasf t t u

streets without designated bikeway infrastructure, the PM peak period, and poor lightings and
weathel{23]. This study will build upon the City of Vancouver Cycling Safety Sti&8} by

developing macrdevel Collision Prediction Models (CPM$) proactively evaluate bicycle

safety CPMs are mathematical models that relate the collision frequency to exposure, geometric
and sociedemographic characteristics, in order to estimate the expected collision frequency for a
location and to facilitate safety planninichis study use€PMs, eéveloped using the generalized
linear modelling approacko overcome the shortcomings associated with traditional linear
regressionj25]. This modelling technique that predicts bicygkhicle collisios at the macro

level will produce models that can be used as a reliable empirical based decision tool for

planners and engineers.

1.4 Research Objectives

Several studies have preugly developed mactievel CPMs. bwever, little research
has been undertakeo develop macrevel CPMsfor bicycle collisions. The few studies that
have developed mactevel CPMs for bicycle collisions have usgaxy bicycle exposure
measures such as bicycle lane kilometers and Vehicle Kilometers Travelled (VKT). Thissstudy i
unique in its usage of the actual bicycle exposure variable represented by Bicycle Kilometers
Travelled (BKT) as a variable in the models. Following methodologies previously developed in

macraelevel CPMs research, the objectvef this study are



1. To identify data needs and collect exposure, infrastructure and-deai@graphic
variables that would influence bicycle safety to input into the statistical model,

2. To develop bicycle macrlevel CPMs using generalized linear regression modeling
(GLM);

3. To demongate the use of the bicycle madevel CPMs by applying the models to a
case study of the COV to proactively evaluate the safety of bicycle use, through
identifying, ranking and diagnosirggllision prone zone€CPZ9 to evaluating the level
of bicycle sfety to inform future COV bicycle transportation plans; and,

4. To identify potential safety countermeasures for the highest ranked CPZs that could be

applied to each area to improve bicycle safety.

1.5 Thesis Structure

This thesis i®rganizedn five chapters. Chapter 1 introduces thallengesand
motivations behindhetopic of bicycle safetyas well aghe research problem statement and
objectives. Chapter 2 is a literature review coveringafhdicationof proactive road safety in
trangortation planning, the introduction of road safety improvement programs, the history of
macralevel Collision Prediction Models (CPMs) and the process of model development. The
literature review concentrates on previous bicyakety studies, includindge development of
bicycle related macrtevel CPMs. Chapter 3 describes the methodology of the thesis, including
dataextraction, model development and the applicatibthe CPMs to macreeactive Black
Spot Programs. Chapter 4 presents the model reasiltgell as the identification, ranking,
diagnosis and remedy of Collision Prone Zones (CH=Asally, Chapter 5 summarizes the

research, conclusions, contributions and recommendations for fubuke



Chapter 2: Literature Review

The purpose of this literature rew is to providea summaryf the reseah foundation
on which this thesis has been built. The representative review will focus on the consideration of
safety in the transportation planning process, previous work on road safety improvement
programs, the delopment and application of madevel CPMs, the selection of active
transportation indicators for developing bicyotdated macrdevel CPMs, and finally the

process of data assembly and model development.

2.1 Considerations of Transportation Safety in Panning
2.1.1 Safety in Long-Range Transportation Planning

Incorporating safety directly into the lomgnge transportation planning process can be
an effective way to reduce the large societal and economic costs of collisions. The increasing
need to consider aal safety proactively within the transportation planning process has been
driving road safety research throughout the pasttwentyv e year s. The Net her|
Il nstitute for Safety Research first dodicyel oped
vision with the objectives to proactively prevent severe collisions before they[@éfuvan
Schagen & Janssen (2000) proposed further wor
policies targeting the organizational and financial asd@als This work on collision prevention
wasc o nt i n uAddancimg Sustainéble Safety: National Road Safeittook for 2005
202( 2006) , which updated the existing researct
implementation, innovation and reinforcement of research and development indbeve

safety planning field28]. Weijermarsetalf 201 3) applied the ASustai n:



cycling safety and states the importance of short, convenient and recognizable routes, and
separ#on of bicycles from vehicleg9].

I n the U.S, the Congr esso0Sdentayn(EEA21r1098)t i on E
required safety and security to be incorporated into the planning process, the first time the U.S.
federal government committed to including safety in transportation planning. While the Act
showed a federal commitment to developrsty linkages between safety and planning, Berkovitz
(2001) identified the i nadequacy of existing
For example, a highazard location analysis may improve a dangerous location, but it will not
correct safty problems for VRUs such as high speed and volume roadways with poorly designed
and discontinuous facilities. The U.S. Department of Transportation recommended two national
g o a | Bhe Nationdi Bicycling and Walking Study ( 1994) : t o dtagpsbl e t he
made by cycling and walking, and to reduce the number of cyclists and pedestrians killed or
injured in traffic collisions by 10%. Berkovitz (2001) stated the importance of planning for both
goals simultaneously, or else efforts to achieve oneagoahinder the oth¢B0]. Furthering this
direction, researchers de Leur & Sayed (2003) developed a method to address road safety
proactively in transportation planning before problems occur to conaplietine traditional
reactive safety methods. Their goal was to develop a systematic framework for planners to use to
effectively address road safety concerns when developing planning alterfg®ves

More recently in the U.S., in007, an update to the Statewide and Metropolitan
Transportation Planninginal Rule (23 CFR 45@ncouraged the strengthening of safety within
the longrange transportation planning process. The Transportation Safety Bl&namework
(2012) demonstratdabw planners could integrate safety into every stepeftraditional

planning process and use safety as a decision factor in transportatiofBfjaimte National
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Cooperative Highway ReddBhBncbr Po o gtoeongiran§eReE p Dy t
Transportation Plannimg ( 2 0 0 6 ) transportadion plaheeds witomprehensivéools and

strategies to consider safety in the planning prosessh as an agggate planning level safety

prediction tool. The intent of the tool is to enable the forecasting of safety at the Traffic Analysis
Zone (TAZ) level. The report found the safety prediction model appropriate in the following

cases:

i Setting safety targets oegormance measures;

1 Understanding the safety impacts of lasgale projects (corridor level or higher) that
may affect the Vehicle Kilometerravelled (VKT), future growth, or other planning
related factors in the absence of targeted safety countenegaand,

1 Comparing and contrasting growth scenarios in the absence of targeted safety
countermeasures.

These analyses would be used to understand the different levels of safety investment required to
meet regional safety performance targets. The repigdsthe model to be inappropriate in the
following cases:

1 Selecting land use and transportation investment strategies based on model results, as
there are many different factors when considering an investment and safety
countermeasures could be applieat,a

1 Evaluating and selectingafety countermeasures, because the models predict but do not

explain collisiong32].
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2.1.2 Lack of Proactive Safety Considerations in Transportation Planning

Globally, the Wodl He al t h O r\prdmepart art irjuoy préventia@an(2004)
identified road crash injuries as predictable and preventable, and recommended the need to
incorporate safety as a lotgrm goal into landise and transportation plannif&8]. Today,
safetyconscious transportation planning is regarded as a vital addition to traditional reactive
safety approaches teduceroadfatalities and injurie®y supporting comprehensive, system
wide, multimodal, datariven, and proactive transportation planning processes that integrate
safety into transportation decisiomaking.

Popular methods of sustainable safety practices, such as road safety audys, over
consider road safety during the design process. With these methods, there is the risk that planners
will consider that safety concerns would be addressed in the design stage, and will not consider
safety atheprecedingplanning stagelt is thereforeessential to develop a framework to
proactively evaluate safety at the planning stage. de Leur and Sayed proposed a framework to
proactively evaluate road safety in the planning process (2003), by systematically considering
safety within the planning emanment for planners to understand the safety impacts of the plans
they develog19]. Gaines & Meyer (2008) surveyed rsize metropolitan planning
organizations in the U.S. and found that the majdrdtg incorporated safety considerations
within their longrange transportation plans, but some are more proactive in the quantitative
analysis of safety outcomes than otH{@&#4. Despite policy advancemts, transportation safety
is still not commonly considered proactively during the transportation planning processes, in part

due to the lack of available empirical tools.
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2.1.3 Proactive Transportation Planning Bicycle Safety Considerations

Transportation foreasting models, which help to inform decision makers on project
prioritization in transportation planning, have traditionally excluded pedestrians and cyclists. To
plan for future safe active transportation friendly communities, quantifying the use antiglot
demand of pedestrian and bicycling facilities is necessary. The Pedestrian and Bicycle
Information Center (2015) summarized the state of practice of pedestrian and bicycle forecasting
tools. The research suggested that modifying regional demarmadstirey models to incorporate
bicycle and pedestrian modes could provide consistency throughout the planning process.
However, potential drawbacks include: Traffic Analysis Zones (TAZs) may be too large to
capture internal trips, the number of trips maydss than the margin of error of model
validation, and the models typically exclude fantorized trips from the trip distribution and
route selection steps. Alternative forecasting model tools include factor methods and sketch
planning tools (using exisig count data and elasticity assumptions for projections), aggregate
demand models (regression models using existing activity and influencing attribute data) and
Geographic Information Systems (GIS) and other spatial [86]s

Traditional reactive road safety approaches require a significant observed bicycle
collision history to exist before improvement action is taken. This is a problem for VRUs,
because the number of observed collisions may bsnadl for significanstatisticalanalysis but
the severity on pedestrians and bicyclists is high. Due to the shortage of comprehensive bicycle
exposure data available, such as bicycle counts and forecasted volumes, it has previously been
difficult to proactively consider bicycle safety in the planning process, and previous research has
not yet done so effectively. Developing an empirical method to systematically consider bicycle

safety in transportation planning is an important topic of research to Imiidceristing
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literature, because this is a sustainable and healthy but vulnerable transportation mode that is

becoming increasingly popular

2.2 Road Safety Improvement Programs

The objective of reactive Road Safety Improvement Programs (RSIPs), or black spot
programs, is to identify and trelatcationsthat are considered hazardous based on the analysis of
collision, traffic and highway data. RSIPs involve the following purposes:

1) To identifyhazardousocatiorns and detect black spots;

2) To identify problemsthrough location diagnosis; and,

3) To identifysolutionsand remedies by finding countermeasures to solve the problems

[36].
The assumption dRSIPsis that road design typically play significant role in contributing to
collision frequency. Sayed et al. (1995) found that n@dated factors have caused about 32% of
collisions based on analysis of collision data in Britistu@dia[37]. For that reason,
improving the transportation engineering elements of black spots can significantly decrease a
proportion of collisions. Properly identifying and ranking black spots fgmdisis and treatment
is important to ensure that resources are only spent on areas with highest ptkistcai
reduction(PCR).

A black spot is defined as a location or area that are found to have a significantly high
collision potential compared #group of similar locations, typically through the measure of
collision frequency. The collision prediction modglSPMs) use of an exposure variable
corrects for possible frequency bias when comparing different locations with different traffic

volumes éxposure levels). To ensure that only truly hazardous locations are identified as black
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spots and avoid regressttmthemean (RTM) errors, a popular statistical technique used to
reduce the selection bias is the Empirical Bayes (EB) technique. The Hitigiee defines the

collision probability of the mean collision frequency of a given area as dependent on the
observed mean collision frequency of the locatiodan objective prior distribution based on
empirical data from a reference population or fremg CPMs. CPMs have the advantage of
analyzing collision frequency instead of collision rates and eliminate the needdoylarge

reference populatiof88]. In addition, using CPMs allows for logat-specific prior distribution

to be derived for each location from an imaginary reference population, of which the estimates of
mean and variance have shown in previous research to be more reliable than a sample from real
reference populatiof89]. It is therefore vital that the appropriate CPM is selected on the basis of
traits examined and type of safety estinjd(d.

After the development of EMs (as described in subsequent sections 2.3, 2.4 and 2.5) and
the selection of the appropriate model the first step is to estimate the safety of the prior
distribution,O ¥ , byinputtingt he val ues of each | ocationés val
prior distribution variance, is calculated as:

O

" (2.1)

WwwDY¥

and assumes that the prior distribution follows a gamma distribution with the shape and scale
parameters, alphaand betd , shown as:

o 2.2)

I = (2.3)
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Where:

‘O v : predicted collision frequency

Il : overdispersion parameter

| :alpha, shape parameter

I : beta, scale parameter
This model outputs allow for the development of locaspecific estimates fd® ¥ and
w wO ¥ . The following step is to gather local observed collision history data to refine the prior
estimate provided by the CPM to define the posterior distribufiis. posterior distribution
represents how the mean collision frequency varies in a subpopulation of variables having
similar traits in terms of traffic, geometry and collision history, and is gamma distributed with

the shape and scale parameteend’ shown as:

Il ®éo6eod (2.4)
I O~
_ 2.5
I = (2.5)
Where:
OWEOEOthe |l ocationds or zoneds collision

The mean of the posterior distribution is in other words the EB safety estimate for location

‘0 6. The mean 6, and the variancey @ IO 6 , of the posterior distribution are:

iy W m. ... OY
OO0 OvYIw wWeEOEO—— I wédeo (2.6)
I O~
T O s Y e
WHOI06 WO OVEOEO—— | ©EOEO (2.7)
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Where:

‘006 : EB safety estimate for location,
The final step to identify black spots is
safety,O 6 to the regional average or norm for locations with similar traits. Each location would
be considered coflion prone if there is a significant probability,usually 0.95 or 0.99, that the
EB safety estimaté) 6 exceeds the specified standard. The location is identified collision prone

if the following condition is met:

ljiox p _ Q
3l wé 62O

Q_ , (2.8)

Where:
» . probability that the EB safety estimates exceed a specific value (usually 0.95 or 0.99)
Once a location has been determined as collision prone, ranking must cegsurte the
locations in most need of treatment are looked at first. Ranking criteria has typically used the
potential collision reduction (PCR), based on the difference between expected and observed
collision frequency:

06Y 06 O~ (2.9)

Following black spot identification and ranking for treatment, a safety diagnosis is performed.
First, collision history is analyzed to identify an overrepresentation of clusters of specific

collision types by comparing percentages of specific collisipagyo other similar locations.
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Second, location specific traits are identified and analyzed to identify potential causes of
overrepresented collision types. Once the safety issue has been identified, the next step is to
generate a list of potential remeslito decide on the remedy for the specific location. The final

choice of remedies to implement will involve engineefupementind experiencg38] [40].

2.3 Macro-Level Collision Prediction Models
2.3.1 Previous Research on Macrd_evel Collision Prediction Models

Progressn road safety research has improved the empirical tools for proactive road
safety management, including the development of mieee collision prediction models
(CPMs). Due to the interest in communityde proactive safety planning, there has been a
growing body of research produced on the development of Ame@bCPMSs to date. The first
studies to develop CPMs as planning toolpredict and explain collisions by Ho &
Guarnashelly (1998) and Lord, Persaud & Palmisano (2002) appliedleveianodels
determining the level of safety for single locations, such as intersections, based on an exposure
variable of traffic volume obtaimkfrom regional transportation planning models, EMME/2
forecast§41] [42). Issues with micrdevel CPMs were that they were sensitive to the exjgosu
variable of traffic volume, data intensive, and applied to a singular locational level, making it
difficult to predict safety accurately lortgrm on a larger scale. Further studies found macro
level CPMs as an effective alternate tool for maemactive use to identify, diagnose and remedy
hazard locationf21] and proactive road safety plannifgf]. Macrclevel CPMs aggregate
explanatory varialgls to the TAZ level, before relating them to collision occurrence. Successful
macrcelevel CPMs require data assembly and model development, both processes that are

explained in subsequent sections.
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There are several important studies that apply migse CPMs to evaluate safety at the
planning stage. Hadayeghi et al. (2003) developed maeeb accident prediction models to be
used as a safety criterion in the evaluation of urban transportation systems. The models were
developed for Toronto, Canada bypgpng data to the traffic zone level (463 total zones) with
inputs from the regional EMME/2 transportation model. The models found that the number of
accidents per zone increased as the VKT, road kilometers, total employment and household
population andntersection density increased, and decreased with higher posted speeds and
higher congestion. The results found the goodionés$s of the models produced mixed results,
so the models were further developed into Geographically Weighted Regression (GWWR) mod
to explore the relationship between zonal collisions and explanatory planning variables.
However, since the GWR models resulted in inconsistent improvements the authors noted the
significance of data quality to their resyis3)].

Ladron de Guevara et al. (2004) developed CPMs for 859 traffic zones in Tucson,
Arizona that associated increased collisions with increased population density, employment
density, intersection density and arterial andemttir roads laneniles. Due to the lack of
availability of reliable traffic volume forecasts, this study used population density as the leading
exposure variable instead of exposure variables typically used (i.e. VKT, AADT). The study
found that high popatkion density was related to high collision occurrence; zones with high
employment, intersection density and arterial roads were associated with higher number of injury
and property damage (PDO) collisions; and, high intersection density was associated wit
decreasing severity of collisions. The question of causation or correlation of the model variables

to collisions has yet to be verifi¢d4).
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Lovegrove and Sayed (2006) developed mdevel CPMs calibrated for 577 zones the
Greater Vancouver Regional District, now called Metro Vancouver, Canada, incorporating a
higher quality of accident data due to the comprehensiveness of the Insurancet@orpbr
British Columbia (ICBC) data used. The models developed included the total and severe traffic
collisions during the AM peak scenario for urban and rural land use. The principle exposure
variable used in the models was either vehicle kilometersltea (VKT) or total lane
kilometers (TLKM). This study obtained the exposure variables from two sources: measured
with GIS software (TLKM) or modeled from EMME/2 forecasts (VKT). The CPMs were
developed using generalized linear regression to predict codleggion frequency based on
statistical associations with both measured and modelled exposure variables, to compare results
and provide practitioners without access to EMM&dgware an alternative method to estimate
exposure variables. The developeddels were grouped into four themes according to their
explanatory variables:

1 Exposure variables consisted of attributes describing the number of vehicles, roads and
congestion in each zone (i.e. VKT, TLKM, average congestion, average speed).

1 Sociodemogragh variables consisted of variables describing residents, workers and land
use (i.e. average family size, home density, population density).

1 Network variables consisted of variables describing the road network in each zone (i.e.
number of traffic signalgntersection density).

1 Transportation demand management (TDM) variables consisted of variables describing
the characteristics of travel demand in each zone (i.e. total commuters, commuter density,

number of drivers commuting).
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The study found that increabeollisions were associated with the majority of explanatory
variables, and decreased collisions wessbaiated with higher family ®zpercentage ofore
residential area, number of thremay intersections and local road kilometg2§|.

Most macrelevel CPMs in previous studies have been developed for vehicle collisions
only. Recently there have been models developed taking into account transit characteristics and
transit collisions by Cheung et 2008)[45] and using transit physical and operational elements
and transit network indicators as explanatory variables by Quintero et al. {26[L)7]. In
addition, studies developing madevel CPMs to predict bicycle safety will be outlined in the

following section.

2.3.2 Previous Research on Systematically Applying CPMs to the Planning Reess

A key step after creating maetevel CPMs is to develop a systematic method to apply
the CPMs to the planning environment. The models could be used to optimize the planning
process by assessing the safety impacts of different planning alternahetteri€e et al. (2003)
summarized a number of crash predictions workshops in the U.S., with the objective to identify
tools for assessing the safety impact of loagge transportation plans. The challenge was to
develop simplified crash prediction modbkssed on available variables that could be used for
long-range forecasts, such as traffic volume. A major recommendation for considering quantified
safety in longrange planning was the practice of comparing scenarios on a relative basis. Due to
lack of cata on bike and pedestrian collisions, the research stated a recommendation to analyze
the impacts of alternative scenarios on the safety of bicyclists and pedestrians for policy makers

to understand the safety differences for various levels of invesimaitérnate modegtg]. In
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addition, Hirst et al. (2003) noted that the CPMs developed must be updated and recalibrated on
a regular basis, because accident risks decline ovef4®he

The macrelevel CPMs developed if21] for Metro Vancouver were applied to two road
safety planning applications of (1) traffic calming and (2) neighbourhood planning road
networks, by Lovegrove & Sayed (2006). While 47 CPMs were develogdéd]im six step
selection process considering scope, task, land use type, relevant variable themes, collision
theme and data quality was used to select the appropriate number of models needed for each
safety application. Reducing the amount of datarabty effort through this process makes the
models and guidelines reasonable for use by practitioners, providing them an empirical tool to
complement traditional road safety improvement progri@#s The planningevel safety
prediction models developed i3] for Toronto were further presented with illustrative
applications to demonstrate how they could be used as decision support tools ferspgiann
explicitly consider safety in the planning process. The study presented-lexagroollision
modification factors (CMFs) to illustrate how the models can be used to examine the impact of
each planning variable on the safety of an urban Fatje

Previously developed communibased macrtevel CPMs were applied to evaluate the
road safety of a transportation plan by Lovegrove, Lim, & Sayed (2010), with the objective to
test model use in Metfdancouver. The researchers found the exposure variable of VC
(neighbourhood congestion) to be very influential in model estimates, significance and goodness
of-fit, and recommended that only Wi@clusive CPMs are used. In addition, due to large data
extradion and assembly effort, it was recommended that the minimum number of models
required to meet data quality and analytical needs are selected, and future research on process

automation is needd@0]. The same previously developed commuigsed macréevel CPMs
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were also used to calculate the road safety effects of mobility management strategies such as
smart growth, congestion pricing and improved walking and cycling transportation options by
Lovegrove and Litman (2008), concluding that these transportation demand management

strategies have the potential to improve traffic sgfety.

2.4 Developing Bicycle Related Macro-Level CPMs
2.4.1 Identifying Bicycle Safety Indicators

As discussed previously, there are limitations with using existing biegtiele
collision data, due to the small nature of bicycle collision datasets. Littman et al. (2000)
developed a guide which states bicycle crash datarhiseeds to be evaluated by type of crash
and contributing factors, pedestrian and cyclist demographics, location type (intersection
midblock, driveways, etcetera), to identify potential problems. However, issues with relying on
existing pedestrian and dyst collision data include: locations with a high frequency of
collisions indicate some (unknown) combination of high risk or heavy use, pedestrian and
cycling collisions tend to be underreported, and a large number of collisions would have to
actually @cur to acquire sufficient collision dgqta2]. For these reasons, it would beneficial to
develop an empirical tool to predict collisions without waiting for collisions data to accumulate.
To develop bigcle-related macrdevel CPMs, it is necessary to understanding bicyelated
indicators. These macievel CPMs can support the economic justification for decision makers
investing in bicycle infrastructure and can aid policy makers in promoting bigyeffectively
by quantifying the economic tragasfs.

The Netherlandsd SWOV Institute for Safety

for lack of safety in cycling infrastructure based on a literature review and consultation with road
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safety expertsyith the objective to use these indicators to assess cycling infrastructure in
practice. The study found factors that had the most impact on bicycle safety are: the volume of
cyclists (exposure), the visibility at intersections, the density of interssctioe speed

differences between road users, the lighting, the pavement surface, the width of the bicycle
facility and the degree of separation from road ufgdis In addition, he National Highway

Traffic Safety Administration (2014) found that most bicycle deaths occurred in urbamadeas
norrintersection locationand during the afternodn evening rush hodb4].

To develop reliable empirat tools, first it is necessary to understand all the factors
influencing bicycle use. Xing et al. (2010) classified all possible factors into individual factors
defined by a cyclistds characteristicst (gende
factors defined by transportation costs, bicycle culture and existing policies and physical
environment factors defined by geography and infrastru¢biie Previous studies have found
that men are morléely than women to cyclgs6], household income has a negative effect on
bicycle usg57], and car ownership has a negat¥iecton bicycle us¢58]. Population density
is also an important predictor, as higher densities typically indicate urban environments with
shorter destinations and mixed lamsk[32], which areideal environments for bicycle use. In
terms of infrastructure, previous studies have found that good bicycle facilities (i.e. bike lanes,
lighting and bicycle parking) promote bicycle mode siifile a fragmented bicycle ngork
reduce bicycle mode shiff59]. Reynolds et al (2009) performed a literature review on
transportation infrastructure and bicycle safety, and concluded that pimpitidgicycle
infrastructure redces collision and injury frequency among cyclists, along with street lighting,

paved surfaces and low gradé§].
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2.4.2 Macro-Level Bicycle Collision Prediction Models Using Generalized Linear
Modelling

Mostmacraelevel CPMs have been developtmt vehicle collisions only, and very few
researchers have included bicycle variables in the analysis. Due to the increase of bicycle volume
on-street and its effect on safety, researchers have recommended thamegoftdeveloping
bicycle related macrtevel CPMs[61]. Researchers who have studied this topic hypothesize that
increasing the amount of bicycle infrastructure, which in turn increases bicycleilisésov
improve road safet}62] [63]. Lovegrove (2007) developed commuHigsed macrtevel
CPMs using negative binomial regression for Metro Vancouver and created a-belyicle
collision model, finding increased collisions to be associated with increased bicycle mode share
[38]. Wei, Alam and Lovegrove (2011) identified potential factors influencing bicycle use, based
on a comprehensive literature review. The study then developed several newawalcGPPMs
based on the bicycleelated indicators to estimate the road safety changes resulting from bicycle
improvement at the macilevel. In addition to th@reviously used exposure, soasmaographic,
transportatiodemandmanagement anaadnetwork variable$21] [38], the study chose new
variables representing factors influencing bicycle use and safety to be considered in new CPM

development together withld variables, shown ifablel.
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Table 1: Additional variables influencing bicycle use according to Wei, Alam & Lovegrovg21] [38]

Variable ‘ Abbreviation
Dependent Variables

Total collisions (auto, bike, transit) over 3 years T5
Bicycle-only collisions over 5 years B5
Explanatory Variables

Bicycle lane kilometers (leading variable) BLKM
Bicycle kil straveled(leading variable) BKT
Work-home trip distance (kilometers) WHD
Share of population at age <=30 (%) POP<30
Proportion of males/females M/F
Mean number of vehicles per household (proxy of household income) VHH
Average gasoline price GAS
Average annual cost per capsi@ending on bicycle improvements ACPB
Number of bicycle racking locations NBR
Stop sign density for bicyclists SSBD
Stop sign density for auto SSD
Average annual precipitation (inches) PRPT
Average annual temperature (centigrade) TEPT
Average sharef hills (=area of hills/zonal area) HILL

The study used bicycle lane length as an exposure variable, and found it to have a significantly
positive relationship with the dependent variable total collision frequency. Wei, Alam and
Lovegrove (2011) iderfted several shortcomings, the most notable being the absence of a
transportation planning model for bicycle use resulting in the omission of the leadosyexp
variable bicycle kilometertravelled and a lack of bicyetelated variable data, such as
temperature and precipitatig63].

Wei and Lovegrove (2013)eveloped macrevel communitybased CPMs for bicycle
vehicle collisions, using data from the Central Okanagan Regional District and using bicycle lane
kilometers and total lane kilometexs lead exposure variablds this studythe bicycle lane

kilometess variable 1statistic did not meet the 95% lewggnificancetest and had to be removed.
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The model results showed that an increase of biexatécle collisions was associated with an
increase in total lane kilometgbicycle lane kilometers, bups, traffic signals, intersection

density and percentage of artefliatal intersections. Data issues in the study included the
unavailability of EMME/2 exposure variables such as bicycle kilersdtavelled, vehicle

kilometess travelled and volume/congien, and the relatively low mode share of bicycle use in
the Central Okanagan Regional District. The
Americabés current | ow |l evels of bicycle use
bicycle mode share increases, but the authors contirpredetthat as bicycle mode share

increases beyond the yet unknown threshold level, a net safety improvement should be observed

[62].

2.4.3 Macro-Level Bicycle Collision Prediction Models Using Other Statistical
Techniques

There has been research on alternative modelling methods to the negative binomial
regression model used to look at bicycle safety from the meceb perspective. A least squares
analysis was used to examine the relationship between number of pedestrians or cyclists and
their collisions with motor vehicles by Jacobsen (2003). The research foaihikielihood that a
bicyclistwill be struck by a motorist varies inversely with #mount of walking or bicycling,
across communities of varying size, from specific intersections to cities and countries, and across
time periodg464]. A binary logistics regression was used to modelimgiahips between
different types of collisions, including bicycle collisions, and independent variables in
demographic, land use, and roadway accessibility by Kim et al. (2010). The bicycle collision

model results suggested that demographic variablesasuemployment and income level were

27



significantly and positively associated with bicycle collisions and accessibility variables such as
number of bus stops, bus route length and number of intersections were positively associated
with bicycle collisiond65].

Further research on bicyelehicle collisions in Beijing from Yan et al. (2011)
concentrated on the integlationships between irregular maneuvers, crash patterns and bicycle
injury severity, usig a binary logit model to preform bicyclist injury severity analyEise
s t u degudisssuggest the installation of median division between roadway and bikeway,
improving lighting on road segments and reducing speeds on high bicycle volumesooddis
improve the safety of cyclisf66]. Research investigating teéfectsof spatial correlation using
a Bayesian spatial framework to mogelestrian and bicyckollisions at the macrtevel by
Siddiqui, AbdelAty, & Choi (2011) recommended that spatial correlation should be considered
when modelling pedestrian and cyclist collisions at the aggregatd &yeAnother study by
AbdelAty et d. (2014) integrated trip and roadway characteristics to develop several models at
the TAZ level, including bicycleelated crash models on the foundation of various estimator
groups[68]. Yasmin & Eluu (2014) investigated the influence of built environment on bicycle
safety at the TAZ level, using latent segmentation based count models from single state and dual
state systems to formulate models for Montreal and Tol@3o A study by Kwon et al. (2015)
developed a bicycle accident forecasting model using multiple regression analysis as well as
performed a survey for the analysis of road safety issues and presented safety improvement
measure$70]. Bicycle safety is increasingly becoming an important topic of interest worldwide,
as more research is done on techniques to build models to predict and analyze safety impacts on

cyclists.
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2.5 Data Assemby
The acquisition and processing of the data required for model development is a major task
for developing macrtevel CPMs. Data needs at the planning level can range from socio
demographic to infrastructure to synthesized data from traffic forecastsndtiel quality and
guantity of data is critical to the quality of the model predictions, and can vary substantially due
to the large number of data sources typically required. For example, for traffic volume forecast
data from regional transportation plamgp models (EMME/2), data quality, as a function of how
road and transit network is defined, is more of an issue than data complgfdhd3etential
data extraction sources, such as regional or npaligovernments and census, must be
considered in order to confirm data costs, availability, quality, and predictaBBjtyPrevious
research has identified four themes for variables, including:
1 Exposure variables, consisting of data measured through GIS or modeled through
EMME/2;
1 Socicdemographic variables, typically consisting of data measured through census or
extracted from EMME/2 model;
1 Transportation demand management variables consistingasiumesl through census or
modeled through EMME/2 data; and,
1 Network variables, consisting of measured through GIS[@&8d62] [46] [20] [21].
In addition, collision variables are dependent parameters in the ieaer@€PMs, and previous
research has used total collisions, severe collisions or property damage only collisions as
dependent variabld3?2]. Including new types of data sources and usintptgate GIS dia is
important for the development of empirically sound and relevant models. Many previous studies,

such ag46€] [20Q] [2]] [50], have usedutdateddata to develop maciievel CPMg72].
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With regards to acquiring bicycle exposure data, possibilities range from using annual
average daily traffic (AADT) from bicycle counfg3] to using smartphones to collect bicycle
data[74]. Big data from smartphones and other applications has the potential to influence future
methods of collecting travel behaviour data suitable for mobility stlidi#sThis thesis uses a
method of quantifying the use of bicycle facilities by calculating exposure of total annual bicycle
volume on a road, the AADT. Esawey, Lim, et al. (2013) expanded daily bicycle traffic volume
to AADT, by developing daily adgt factors such as grouping daily factors by
weekday/weekend, developing weatkpecific factors and developing factors for different road
classes. The COV has a rich catalogue of bicycle count data, which allowed this analysis to make
use of daily bicy& volume data for the years 2010 and 2011. Due to monthly weather
fluctuations that have an impact on bicycle travel, this research proposed to estimate monthly
average daily bicycle traffic, as well as AADT. The study resulted in a comprehensive database
of annual and monthly average daily bicycle traffi8], which will be used further in this thesis
to represent the bicycle exposure variable.

The followingTable 2represents variablesed inprevious macrdevel CPMs
development, as well as potential suggestions for future bicycle Aea&iocCPM development

from other researchef62] [72] andthis study
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Table 2: Potential included variables for macrolevel CPMs

Theme Included Variables Symbol Derivation Citatiors
Exposure Vebhicle Kilometres Traveled VKT Modeled [20] [46] [21]
Neighbourhood Congestion Modeled/
(volume/capacity) VC Measured [20] [2]]
Modeled/ [20] [46] [62] [2]]
Total Lane Kilometres TLKM Measured
Total Neighbourhood Area AREA Measured [21] [20] [62]
Total Bicycle Lane Kilometres TBLKM Measured [62]
Total Transit and Vehicle Kilometres
Travelled TTVKT Modelled [46]
Total Transit Kilometres Travelled TKT Modeled [46]
Average Posted Speed ASP Measured [21]
Bicycle Kilometres Traveled BKT Modeled Suggested
Average Neighbourhood Congestion AVC Measured Suggested
Collisions Total Collisions over X years TX Measured [20] [21] [46]
Severe Collisions (fatal and injury) over X
years SX Measured [46] [21] [20]
Property Damage Collisions over X years | PDOX Measured [46]
Total Bicycle/Vehicle Collisions TBX Measured [62]
Severe Bicycle/Vehicle Collisions SBX Measured Suggested
Bicycle Collision Frequency BFX Measured Suggested
Rush Hour Collisions TRX Measured Suggested
Socio _ Urban Zones URB Measured [62]
demographic
Rural Zones RUR Measured [62]
Population POP Measured [62] [46] [21]
Population Density POPD Measured [62] [20] [21] [46]
Population aged <30 POP30 Measured [62]
Male/Female Ratio M/F Measured [62]
Residents Working WKG Measured [21]
Jobsper Unit Area WKGD Measured [20] [21]
Home NH Measured [62]
Housing Units per Unit Area NHD Measured [62] [20] [21] [2]]
Average Family Size FS Measured [20] [21]
Employment Level EMP Measured [62] [20] [46]
Employment Percentage EMPP Measured [62] [20]
Employment Density EMPD Measured [62] [46]
Participation in Labour Force PARTP Measured [62]
Unemployed Residents UNEMP Measured [62] [2]]
Unemployed Rate UNEMPR | Measured [62]

31




Theme Included Variables Symbol Derivation Citatiors
Average Income INCA Measured [62]
Median Household Income MEDI Measured Suggested
Parking Costs PC Measured Suggested
Higher Education HE Measured Suggested
Land Use LU Measured Suggested
Percentage of Commercial Land Use COMM Measured Suggested
Percentage or Residential Land Use RES Measured Suggested
Percentage of High Density HDLUP Measured Suggested
Work-Home TripDistance WHTD Measured Suggested
'I[;reargzrr)]c&rtation Core Area CORE Measured [20] [21] [62]
Management Core Percentage CRP Measured [20] [21] [62]
Total Commuters TCM Measured [20] [21] [62] [46]
Commuter Density TCD Measured [21]
Percentage of Transit Commuters BUSP Measured [62] [46]
Percentage of Bicycle Commuters BIKEP Measured [62]
Percentage of Pedestrian Commuters PEDP Measured [62]
Number of Drivers Commuting from Each
Zone DRIVE Measured [2]]
Percentage of Driving Commuters DRIVEP Measured [20] [62]
Percentage of Car Passenger Commuters| PASSP Measured [62]
Shortcut Capacity Through Local Roads | SCC Measured [20] [21]
Shortcut Capacity x Neighbourhood
Congestion SCVC Measured [20] [21]
Network Number of Signals SIG Measured [21] [62]
Signal Density SIGD Measured [20] [21] [62]
Number of Intersections INT Measured [21] [62]
Intersection Density INTD Measured [20] [21] [62]
Number of Intersection per Total Lane Km| INTKD Measured [21] [62]
Percentage of Thred&/ay Intersections I3WP Measured [20] [21] [62]
Number of ArterialLocal Road
Intersections ALKM Measured [62]
Number of Arterial Lane Kilometres CLKM Measured [62]
Number of Local Lane Kilometres LLKM Measured [62]
Percentage of Arteridlocal Road
Intersections IALP Measured [20] [21] [62]
Percentage oArterial Lane Kilometres ALKP Measured [20] [21] [62]
Percentage of Local Lane Kilometres LLKP Measured [21] [62]
Bus Only HOV Lanes BUSHOV | Measured [46]
2+ HOV Lanes TWOHOV | Measured [46]
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Theme Included Variables Symbol Derivation Citatiors
3+ HOV Lanes THRHOV | Measured [46]
Bus Stops BS Measured [62] [46]
Bus Stop Density BSD Measured [62] [46]
Near Sided Stops NS Measured [46]
Far Sided Stops FS Measured [46]
Midblock Stops MB Measured [46]
Stops in &Parking Lane PL Measured [46]
Stops in a Through Lane TL Measured [46]
Stops in a Bus Bay BB Measured [46]
Stops in a Paved Shoulder PS Measured [46]
Stops in a Gravel Shoulder GS Measured [46]
Number of Routes NR Measured [46]
Total Route Length L Measured [46]
Net Route Length NL Measured [46]
Sum of Route Frequencies in Peak Period FAM Measured [46]
Number of Traffic Circle Intersections INTTC Measured Suggested
Percentage of Traffic Circle Intersections | INTTCP Measured Suggested
Number of Alleyways AW Measured Suggested
Percentage of Alleyways AWP Measured Suggested
Number of Sidewalks WALK Measured Suggested
Sidewalk Density WALKD Measured Suggested
Percentage Topography Over Specific Gr§ TOP Measured Suggested
Number of Onstreet Parking PARK Measured Suggested
Percentage of Ontreet Parking PARKD Measured Suggested
Number of Bike Rcks BIKER Measured Suggested
Percentage of Bike &ks BIKERD Measured Suggested
Number of Stop Signs SSD Measured Suggested
Percentage of Stop Signs SSP Measured Suggested
Average Annual Precipitation PERP Measured Suggested
Average Annual Temperature TEMP Measured Suggested

2.6 Model Development
Macrolevel CPMs are valuable tools commonly used for road seafetipations,
detection and ranking of accidgmione locations and safety planning for neighbourhoods, ,cities

or regions. Because collisions are discrete;megative and rare events it is difficult to develop
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suitable statistical models to explain thétreviously, models were developed using a linear
relationship before further research by Miaou & Lum (1993) showed that the basic assumptions
for linear regression (normal error structure, constant error variance and linearity) did not apply
in the case focollision datasetf76].

Generalized linear regression (GLM) assuming amamal error structure distributipn
usuallya Poisson oaNegative Binomia{NB) error structurghas become the norm iiacent
literature, overcoming the limitations of linear regression models and producing better fit to the
observed collision daf8]. Work to date by researchers developing and applying riewed
CPMs have used computer applications of GIS along with EMME/2 and traditional database and
spreadsheet applications such that the datasets can be assembled for the creatiofenfahacro
CPMs[71] [20] [2]] [62].

The GLM approach is based on work by previous researchers, including Sayed &
Rodriguez (1999)Theassumption i¥ is a random variable describing the number of collisions
at a specific time period. Previous research has found the point probability functienhgven
by theNB distribution with an expected mean and variance of the of:

C (2.10)
I

O® ‘Nooiw
In contrast, the Poisson error structure has an equal mean and variance, giving it the advantage of
being simpler. However this advantage can also be seen as a lim&atios collision data has

oftenbeen found to be overdispersed (with the varianaggogtieater than the mean), thB

distribution is typicallya morerealistic assumptiothan the Poission distributid@5|.
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2.6.1 Model Form
Previous researdi77] has noted that the model form should satisfy two conditions:
1. The model must produce logical results, for example at zero exposure collisions must
equal to zero; and,
2. In order to use GLM, there must be a recognized link function that can ied¢he
model form to estimate coefficients during the GLM pro¢88s[46].
The model can be expressed mathematically based on the follequagjon formfrom
previous researdY7] [21] [20]:
oy o ¢F (2.1))
Where:
E(¥ : predicted collision frequency
& Fd Fio : model parameters
@: external exposure variable

@ : explanatory variables

2.6.2 Error Structure
The GLM approach for developing the models assumes an error structure that is best
described by Poisson BB distributions. To determine the adequate error structure, Poisson is

usuallyassumed initially and the parameters of the distribution are estimated, with the dispersion

parametef, calculated as:

(2.12)
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Wheret is the number of observations amis the number of parameters in the model. The
0 QM1 O éstexpressed mathematically as:

ool bee S 2X (213
Where:
W : observed mean collision frequency at locatiomer a specific time period
W W : variance of the observed mean collision frequency at location
Oy :expected mean collision frequency for locati@s obtained by the CPM
If the value of the dispersion parameteris equal to 1.0 or lower, the Poisson assumption is

valid, and if it is greater than 1.0 than a NB error structure would provide a better fit, as the data

has a greater dispersion than could be explained by using the Poisson distii{itid6] [46].

2.6.3 Selection of Explanatory Variables
While many factors can influence collision occurrema#,all of them are appropriate as
explanatory variables in a CPM. Explanatory variables in the same model must be independent
(not correlated). The recommended method by Sawalha & Sayed (2006) for adding independent
variables is a forward stepwise procezlu
1. Variables are added one by one and their significance is tested, beginning with variables
representing exposure;
2. Three tests must be performed to test the significance of each particular variable:
1 T-stat of the variable must be significant at the 9%¥fidence level (stat higher
than 1.96)
1 The sign (i.e. +) of the variable must be logical
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1 The addition of a variable should cause a significant drop in the value of the scaled
deviance (SD), at a decrease greater than;, = 3.84 at a 95% confider level[39]
Once the variable meets the criteria, it can remain in the model. The next variable is then added

to the model and tested for significance, until there are no more variables left taesvidua

2.6.4 Evaluation of Goodness of Fit

The goodness of fit measures how well the model predicts or fits the etsatision
data. The typicafjuantitative methods of assessing goodness of fitee®: R O © £ ¢
(described above), the scaled deviance (SD) and the shape patigraatkfollows
methodology set out Hy'7] [39]. If the eror structure is Poisson distributed, then the SD is

calculated as:

YO ¢ @l T—— (2.149

If the error structure is NB distributed, the SD is calculated as:

YO ol 12— o i1t (2.15
G 00 Oh | '

A model witha goodfit will have the SD and thgé Q&1 & dess than théd distribution value
with € 1 p degrees of freedom at a 95% confidence IE3@]. For the shape parameter
there is no minimum value recommended, but previous research of CPMs had frouipel

usually higher than 1.[¥§].
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2.6.5 Outlier Analysis
When developing mactlevel CPMs, the models may sometimes not meetay more
of the goodness of fit criteria. This could be due to extreme values, called outliers, which exist
because of errors in the data collections or because data points can be atypical. The outlier
analysis is a procedure to remove the outliers filterdataset to improve the fit of the models.
The methodol ogy i s b aG®abdescnbedbyd [3F,onavkidhshe Di st an

higher value for a given observationQ the stronger the influence on the model.

00 —— i (2.16
np Q
Where:

"Q: leverage value

i :standardized residual of pointcalculated as

®» 0 0'Y

p Qi w p Q

0'Y : the Pearson Residual

r : the number of parameters
The Pearson ResidualY) reflects how well or poorly the model fits tfi@ observation, ani
reflects how far the data is from the rest of the data pointsmgtieodology for removing
outliers involves:

1. Calculating CDfor all points and sort the data in descending order according to the CD
values;

2. Removing the point with the highest CD value;
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3. Recalculating the CPM model but with theralue from the pervious ndel;

4. If the SD change is at lea®tg ; = 3.84 at a 95% confidence lexkben the model is re
estimated producing new parameters, including hend newd ‘Ofor all remaining
points; and,

5. Repetition of the procedure until the change in SD becdeseghanb g  =3.84 at a
95% confidence levdB8].

When the last outlier is removed from the dataset, the model parameters, intlualiege

estimated for the final timgt7].
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Chapter 3: Methodology
This chapter describes the methodology used in this res@drete are three main
components: data extraction, matewel CPM development, and application to ma@active

black spot programs. Figure 1 below provides an outline of this methodology.

Macro-Level Collision
Prediction Model

Data Extraction Application to Macre

Reactive Black Spot

Development Programs

uSelection of
explanatory variables

uEvaluation of
goodness of fit

wOutlier analysis

wGeographic scope
wAggregation

widentify
uRank

uDiagnosis
uRemedy

Figure 1. Methodology outline

3.1 Data

As describedn Chapter 2the quality and quantity of data is critical to developing
accurateand reliable statistical models. Previous recommendagistisscribed in the literature
on the effective data extraction process have been followed to achieve best results for this thesis.
The following sections describe the geographic scope of thetdataggregation approach, data

sourcesquality issues and the finadodel development process.

3.1.1 Geographic Scope

The data extracted for model development is all within the geographic area of the City of
Vancouver (COV), within the Province of British Columbia, Canada. The land area of the city is
about 115 square kil omet er s.helCQVppulatibnotalddh e y e a

about 600,000 residents, dwelling in almost 265,000 households. Land area in the COV is dense
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and urban, with an average population density of 5,249 persons per square ki8@hetdre
COVOs cycl in2gl wasomposed d&f abo40kilometers of separatduke lanes,
paintedbike lanes, local street bikeways and shared use;lasstiown below ifigure2 [81].

In 2011, cycling accounted for approximately 4.4% of trips to work in the 22V

Figure 2: City of Vancouver bicycle routes

3.1.2 Aggregation

The aggregation units used for this thesis were based on 134 traffic analysis zones
(TAZs) wused in TranslLinkdéds EMME/ 2-letelr ansportat
aggregation was chosen after the consideration of the research objective, geographitatcope
availability and computational limits. The TAZs have been developed at the ideal size to keep
population and employment densities at uniform levels and ensure adequate data in each zone for

guaranteed goodness of fit. This level of aggregation Wvasen because the TAZ boundaries
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overlap with both census tracks and municipal boundaries, allowing for easy data integration of
current and future demographic data and transportation ddi@8nd he cta was aggregated to
TAZs to allow for the development of madevel CPMs, which are traditionally performed at

the zonal level. Using zones allows for the comparison of bicycle network and safety indicators
between the various TAZs to identify CPEggure 3 shows the level of aggregation,

representing the cityods 134 TAZs.

Figure 3: City of Vancouver Traffic Analysis Zones

3.1.3 Sources
The list of variables used in this thesis, along with summary statistics is presented in
Table3.1. The data was extracted and assembled from the following sources:
1. The Metro Vancouver regional transportation authority, TransLink, provided geocoded

files of TAZs, as well as road, transit and bicycle networks from the year 2013. In
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3.

addition, TransLinkprovided EMME/2 transportation model outputs consisting of travel
demand (vehicle and transit kilometers travelled, average zonal speed, average, zonal
congestion and transportation mode split), as well as-sl@rgraphic and land use

data for the baseeyar 2011.

City of Vancouver (COV) provided exposure and infrastructure variables such as number
of signals from their most recent Open Data catalogue, accessed in late 2015. The
exposur e Vvar ilkachcleldlometers raférs tgitihe Aotaldkilomeseof bicycle
network that is classified as comfortable and safe for users of All Ages and Abilities
(AAA). This classification is typically found for bicycle facilities that atassified as
separated bike lanes or freet paths.

The Digital RoadAtlas (DRA) was used for intersection data for the base year 2011. The
DRA provides a singular and authoritative source of road data for the province of British
Columbia[82]. The followingFigure4 shows the large number of intersections in the

COV accessed from the DRA.
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Figure 5: Annual Average Daily Traffic (AADT) in the City of Vancouver

5. The I nsurance Corporation of British Colum
insurance company delivered geocoded files of bicycle collision claims in the COV for
the years of 2009, 2010 and 2011 shown in the followiggre6. Three years of
cadlision data was used to decredéiserandomness bias and quantify the relatively
uncommon bicycle collision daf21]. The availability of geocoded insurance claim data
centralized from ICBC was coidgred a great advantatgeovercoming any potential

incomplete and unrepiad collision data problen88].
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Figure 6: ICBC data on bicycle-vehicle collisions from 20092011 forthe City of Vancouver

Potential explanatory variables were then grouped into themes of:
1 Exposure variables related to bicycle and vehicle kilometers travelled, and therefore
collision probability;
1 Network variables related to the transportation road nitvemd,
1 Sociceconomic and commute preference variables.

Table3 presents a list of explanatory variables and their definitions and summary statistics.
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Table 3: Explanatory variables and summary statistics

Zonal
[eludlan) vizhie Derivation | Units | Year Source VEMERET
Variables Symbol Total Averag ( Standard
e Deviation

Exposure
Bicycle
Kilometers BKT Modeled km 2011 Ccov 140401.15 | 1047.77| 2109.96
Traveled
Total "AAA"
Bicycle AAAKM Measured| km 2015 cov 78.64 0.59 1.26
Kilometers
Collisions
Total Bicycle 2010
Collisions over TB3 Measured| cols. 2013 ICBC 1704 12.72 13.49
3 years
Sociodemographic and Commute
Population POP | Modeled | pop | 2011 Tl_rier“nrl](S 626867 | 4678.11| 2648.33
Tkl EMP | Modeled | jobs | 2011 | T3 | 406185 | 3031.23| 3337.34
Employment Link
Household HHD | Modeled | hhvHa | 2011 | TS | 275809 | 2058.95| 1225.99
Density Link
Commercial 4896105.71
Land Use COM Measured| m? 2015 Ccov 7 36538.1| 45152.6
Tl TCM Modeled | S°M™M | 2011 | Tr@S | 15351081 | 92174 | 413.46
Commuters Link
Network
Signal Density SIGD Measured| sig/Ha | 2015 cov 19.12 0.143 0.185
TS S EH INTD | Measured| inttHa | 2011 | DRA 99.648 0.744 0.337
Density

Trans
Bus Stops BS Measured| stops | 2015 Link 1893 14.127 8.159
Percentage of
gterzge”t'a' RPKM | Measured| % | 2015 | cov - 56.444 | 30.635
Kilometers
Total Arterial
Street AKM Measured km 2015 Ccov 285.294 2.129 1.395
Kilometers
PETEETIEGR 6 PMP | Measured| % | 2015 | cov - 7.695 12.75
Park Area

3.1.4 Quality Issues

A few dataissueswere faced when extracting and preparing the data for model

developmentThese issues include the following.
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3.1.4.1 Bicycle Collision Data

Despite the severity and societal burden of bicycle collisions, reported bigfulde
collisions are rare events. Dugithe threeyear time period data was collected, approximately
only 1.0% of all reported motesehicle collisions to ICBC involvedyclists[23], since incidents
such asworrinjurious or norproperty danagingcollisionsmay have gone unreportdd.
addition, thecollision reporting process typically based on the subjective observations by
witnesses and police reparghich isselfreported by those involvgd 7]. The collision records
therefore may be incomplete and lack accurate information, causing errors regarding the spatial
location of the collision and their aggregation into TAZs. ICBC has attempted to solve this issue
by geocoding collisiorlaims as either midlock or intersection on road centrelines, decreasing

precision and addressing potential ef38or by

3.1.4.2 Boundary Effects

When analyzig urban form, using aggregation to the traffic analysis zone can be
problematic because boundaries tend to be on major transportation corridors and intersections.
Due to the aggregation of the data into TAZs, assumptions had to be made concerning the
influence othe aggregation grid choice on the location of collisions on a zone boundary. It has
been observed in previous research that collisions located near zone boundaries may have
influence in multiple zonelB3]. In addition, the geographic scale and size of the TAZs can
impact data homogeneif$8]. This thesis assumed that collision data-geded near zone
boundaries has an influence on adjacent zones and proceeded with a method to assure that

collisions are representative for each TAZ. The methodology to deal with the collision boundary
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effects bllowed work by previous researchéosuseexposure ratio methods to aggregate
boundary date into adjacent zor84]. Collisions were aggregated to each zone according to the

BKT (leading exposure viable) ratio between adjacent zones.

3.1.4.3 Multiple Sources

This thesis integrated geocoded data from several years because the data was acquired
from multiple sources. Thaighest qualityehicle exposure (VKT) and bicycle exposure
(AADT) data available was f®2011, which was therefore determined as the base analysis year
for this thesis. This was supported by the ICBC bicycle collision data existing for the years 2009,
2010 and 2011. Due to the unavailability of historical data, TransLink provided cycling
infrastructure data for the year 2013. The most recent COV Open Data catalogue provided other
road infrastructure data for the year 2015. The time discrepancy between 2011 to 2015 for
vehicle infrastructure variables were assumed to be irrelevant for this bezause the COV
vehicle infrastructure has seen few changes in the past three years. In terms of bicycle
infrastructure, the changes between 2011 and 2013 may cause a few inconsistencies between
data sourcegdowever thesebicycleinfrastructure chargs have been relatively few, and this

thesis assumes that these differences due to several years of data can be considered negligible.

3.2 Model Development

After candidate variables have been chosen, and data has been extracted and aggregated
to TAZs, the dta preparation is then complete and ready for model development. The model
development methodology followed the following procedures described below in the selection of

explanatory variables and GLM regression.
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3.2.1 Selection of Explanatory Variables

Before akveloping the models, the appropriate explanatory variables need to be chosen in
a stepwise procedure, as described in research by Sawalha & Sayed (2006). In this technique
each variable is added one by one, testing the change in goodness of fit asahs mod
constructed. As recommended in previous research, the first variable tested in each model was
the exposure variable, because of its leading prediction influence since no collisions can occur
without exposuré¢39]. In this thesis, the exposure varialsedwasbicycle kilometers
travelled(BKT), for which thevolumewasrepresented bthe bicycleAnnual Average Daily
Traffic (AADT). This basic model acts as a reference model, serving as a base for generating a
new model containing additional variables. The next stage oftltess involvedieveloping a
new reference model that contains the exposure variable and an additionalterphzaréable
that causes the maximum drop in scaled deviance, with remaining variables added step by step
following the same methd@®9].

To choose additional candidate variables to build multiple GRiMsreference (exposure
only) CPM was used to identify Collision Prone Zones. CPZs are defined as zones that show a
higher potential for collisions compared to a specified norm. Due to the randomness and small
size of the bicycle collision dataset, sttitial techniques accounting for randomness need to be
applied to establish CPZs. Similar to previous techniques, an Empirical Bayes (EB) methodology
using CPMs is used to identify the CHB¥[38] [40]. The EB refinement method can be used to
identify CPZs using the process as describegkiction 2.21n additional to local zone collision
history, the zonalD ¥ and VarO ¥ ] are calculated to provide a locatispecific prior

distributionof collisions With this information the zonal EB safety estimate is calculated. The
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additional candidate variables to be added to the reference model wereatilly added
from the list inTable 3under Section 3.3. Variables were chosen from data categories
including sociedemographic data, exposure data, TDM data and network infrastructure data.
Once chosen, the decision to retain a variable in the Inm@debased on the criteria as described

in Section 2.6.3.

3.2.2 Addition of Variables to Bicycle Collision Prediction Models

The model form for the development of the Collision Prediction Models (CPMs) was
chosen according to available data and preuwiessarch as described in Sectio® Zhe model
form that was used for the developed of CPMs was:

oY o F (3.1)

Where:

E(¥ : predicted collision frequency

& Fd Foo : model parameters

@: external exposure variable

@ : explanatory variables
A log-linear transformation was then comptétey using a logarithmic linkunction,using
Generalized Linear Modelling (GLM), as shown in previous resda&&htransforming

Equation3.linto:
0 €0 DEw @O ED A1A) (3.2)

The CPMs devel oped were based on the City of

following data:
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1 O~y was represented by the number of bicycle collisi®B3 The Insurance
Corporation of British Columbia (ICBC) provid¢ke data for the variablEB3for three
years (2009, 2010 and 2011) (see section 3.1.4). Automobile collisions involving bicycles
were the collisions captured in this variable, as ICBC onlyrtemollisions involving a
motor vehicle. It would have been interesting to have collisions involving bicyates
other road usemsr collisions involving only one cyclisbut this data was not available
because it is not reported to ICB&s well, the mmber and severity of these collisions is
likely to be small.

1 The exposure variabl® in this research, refers bicycle kilometers travelleBKT. The
exposure variables were obtained from COV AADT bicycle repository for the years 2010
and 2011 and théransLink EMME/2 transportation model for the base year 2011 (see
section 3.1.4). This variable is critical to the model, since detle of zero exposure
collisions must also remain zero.

1 The explanatory variables, consist of multiple bicyclkeelaed indicators that are
considered likely to influence collision occurrentae list of potential explanatory
variables tested in the CPMs were grouped into two categories:

1) Sociodemographic: refers to population information, commuter characteristics
andland use; and,
2) Network: refers to citywide physical infrastructure characteristics.
Summary statistics of the explanatory variable data can be found in3[&®etion 3.1.
The CPMs were developed following the GLM approach as suggested in previous
research[77] [21] [20] [38] [47], and as described Bection 26 under Literature Review. The

methodology considered the following:
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1 Assumed a Negative Binomial error structure.
1 Procedure for selection of model variables wasveitsgy developing models by adding
one variable at a time and testing the goodness of fit for each added j@%ble
1 Variables chosen were kept in the model based on three conditions:
i) The parameterstatistic is significantt(>1.96 at a confidence level of 95%);
i) The addition of a new variable resulted in a drop of SD for the 95% confidence level
(>3.84); and,
iii) The variable showed a low correlation with wither independent variables in the
model.
§  Oncevariables have been chosen, the model fit is assessed usth@§Xbei & éaad the
scaled devianc8D,described further in Section 2.5.
T Finally, model fit is improved by perfor mi
DistanceCD method, describefiirther in Section 2.5.
The final CPMs were devel oped f odemdglaphicah®Vos 1

network groups of indicators.

3.2.3 Application of CPMs to Macro-Reactive Black Spot Programs

Macroreactiveblack spot analysis uses the indivallTAZ as a unit of analysis instead
of an intersection or road segment for mioeactive analyses. Macreactive guidelines
generally follow the traditional reactive methods, however there are some differences in
methodology as indicated Figure7 by Lovegrove & Sayed (2007) and Lovegrove (2007)

below[38] [40:
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Using micro-level CPMs Using macro-level CPMs
{Conventional Reactive Method) (Macro-Reactive Method)

1. Single model — E 4+— 1. Muitiple model
2. Single location ———» o 2. Single zone
(one Intersection or s 4—— (many locations)
road segment) 5
3. Single decision —— £ 3. Majority ranking
1-j28=CPZ |5
=
4.Single ranking ——» = 4+—— 4. Single ranking
PCR + CCP PCR + CCP +/- 5%

1. Single search ———
(over-represented
collision patterns)

4—. Dual search
(collision patterns,
plus trigger variables)

h Diagnosis h

1.Facllity design
change

2. Strict problem-to-
remedy matching

<—— 1. Zone-wide strategies

4+—— 2. Thematic generation
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Figure 7. Comparison between micre and macro-reactive Black Spot Programq38] [40]

The CPMs were developed in this study with variables chosen to meet the needs of the macro
reactive black spot satfy evaluation. The scope of this citywide bicycle safety study was to

identify Collision Prone Zones (CPZs) and variables that may be hindering bicycle safety.

3.2.3.1 Identification and Ranking
The enhanced EB method using CPMs to identify black spots is basedearch set out
in Sawalha & Sayed (199977], generally following the EB method described in Higle &

Witkowski (1988)[85 with modifications to use CPMs and is described in detail in Section 2.2.
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To identify and rank black spots with madevel CPMs, there must be some adjustments made
to the conventional reactive method.
1. The observed local collision history (count) is lzhea the zonal aggregate, providing
the first observational clue on safety.
2. The zonalO ¥ andw 'O ¥ are calculated to provide the locatispecific prior clue to
calculated the zonal EB safety estimate as describ®ddtion 2.2.
3. Due to multiple CPMsthere will be several EB safety estimates for each zone resulting
in a majority rule when determining a CPZ.
Finally, the calculated zon& ¥ and EB safety estimat&vould differ for each zone resulting
in differences in zonal rankings. This can be ke=b by using a modified ranking approach, by
summing each zones PCR rankings across all maeeb CPMs to develop a total ranking score
for each CPZ, as described in Section 2.2. This score will denote which CPZs are most

frequently ranked as the leastfe and are in need for a diagn¢4ig [38].

3.2.3.2 Diagnosis

Once the CPZs have been identified and ranked for treatment, the diagnosis stage to find
the cause of the safety problem is begun. Safety issues for CPZs can be diagnosed using a
methodology similar to the conventional approach. As with this approachodiadegins by
first looking at an overrepresentation of collision patterns: clusters of particular collision types.
Using macrdevel CPMs method to determine CPZs, an additional indicator can be used: trigger
variables from each model that are hypotbedito contribute to the identification of the zone as
a CPZ. To identify trigger variables, the value of each variable in the top ranked CPZs is

compared with the value of regional averages to understand which variables are triggering CPZ
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identification.A regional average is the mean of the specific variable value for all zones in the
study areaThe regionalCOV statistics (average and standard deviationyariables used in

this study arshown in Table. The variable values thate found to be sigficantly different

than the regional statistics are identified as trigger variables. This indicator can be used together
with observations of collision patterns and site visits to understand the overall safety issues in
each CPZ4Q]. The identification of the zonal safety problem is an important step to realize

potential suitable remedies.

Table 4: Regional statistics in the City of Vancouver for included variables

: Zonal Regional Statistics
Included Variables VeIl Standard
Symbol Average b
Deviation
Exposure
Bicycle KilometersTraveled BKT 1047.77 2109.96
Total "AAA" Bicycle Kilometers AAAKM 0.59 1.26
Collisions
Total Bicycle Collisions over 3 years TB3 12.72 13.49
Socicdemographic and Commute
Population POP 4678.11 2648.33
Total Employment EMP 3031.23 3337.34
Household Density HHD 2058.95 1225.99
Commercial Land Use COM 36538.10 45152.60
Total Commuters TCM 921.74 413.46
Network
Signal Density SIGD 0.143 0.185
Intersection Density INTD 0.744 0.337
Bus Stops BS 14.127 8.159
Eﬁcr)cr:negt'[:ge of Residential Street RPKM 56.444 30635
Total Arterial Street Kilometers AKM 2.129 1.395
Percentage of Park Area PMP 7.695 12.750




3.2.3.3 Remedy

To match the safety issue with a suitable zemge safety remedy, a strategic zonal
safety analysis must be conducted when using rrlaesd CPMs. Examples of possible
remedies could be generated from considering variable theme and diagnosis resuilés, et
variable theme is network (i.e. numbersginalizedntersections could be associated with
increased collisions), TDM (i.e. increased vehicle commuters could be associated with increased
collisions), or sociedemographic (i.e. increased populatios associated with decreased
collisions)[40]. After identifying the zonal safety problemsing the methodology above, zonal
characteristics were analyzed at a micro staidentify possible remaels. This included factors
such as the number of collisions, the quality of the bicycle infrastructure, the topography and the
amount of arterials in each zone, for example. Finally, a list of potential bicycle safety

countermeasures were analyzed andiagpb each zone using engineering judgement.
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Chapter 4: Results and Discussion

4.1 Approach and Results
4.1.1 Development and Selection of Models

There were 10 macHevel CPMs developed for the purpose of conducting a black spot
case study for the City of Vancouver. Thesmtion was to follow the methodology as described
in Sectiors 2 and 3 to identifiand then rankCPZs, diagnose safety issues and recommend
remedies for CPZs in the COVhe collision predictiomnodels developedsed exposure, soeio
demographic, TDM and n&brk variables as indicatgralong withBicycle Kilometers
Travelled (BKT) as the leading exposure varialbkhle5 presents the modetsat predict total
bicycle collisions and their goodness of fit summary statistics. Most models presented showed
explanatory variables as significant at a 95% confidence level, except for the explanatory
variableso f t ot al A AAAO0 bi cy otaleomkitdrsoq TCM) aad psrce(tayd A K M)
of residential street kilometers (RPKM), which were significant at a 90% cockdevel As
expected, the models showed that increased collisions were positively associated with increased
exposure variable BKT. This confirms the intuitive expectation that more bicycle exposure
contributes to bicycleehicle collisionsHowever, theexponent of BKT is less than 1.0,
indicating that the rate of increase of bicycle collisions reduces as more cyclists use the network.
This confirms the safety in numbers concept, which states that an increase in people cycling will
result in an increasa isafety.

Using BKT as the leading exposure variable, the madetsdeveloped among the four
themes of exposure, TDM, soeaif@mographic and network. The exposure variable total All
Ages and Abilities (AAA) kilometers (AAAKM) was positively associatedhagbllisions. The

TDM and sociedemographic variables total commuters (TCM), total employment (EMP),
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household density (HHD), commercial land use (COM), and population (POP) were also found
to be positively associated with collisions. The network variabtgsal density (SIGD),

intersection density (INTD), bus stops (BS), percentage of residential street kilometers (RPKM),
and arterial street kilometers (AKM) were all found to be positively associated with collisions,
while percentage of park area (PMP)swaund the be negatively associated with collisions.

Table 5: Collision Prediction Models and their goodness of fit summary statistics

Pear X2
Model Form k df | SD | son | 0.05, p-value

xX"2 df
Exposure
0.1848BKT"0.6438 2.25| 131 | 143 | 125 159 BKT <.0001
0.1428BKT"0.7167*expf BKT <.0001; AAAKM 0.0642; PMP
0.121AAAKM+ -0.0224PMP) 2.80| 129 | 143 | 146 157 0.0007
Transportation Demand Management
0.156@BKT"0.6248*exp(0.0008CM) | 2.34| 130 | 143 | 127 | 158 | BKT <.0001; TCM 0.0672

SocioDemographic

0.2748BKT"0.5099*exp(0.000COM BKT <.0001; COM <0.0001; EMP
+ 0.000EMP) 299 129 | 144 | 121 157 0.0005

0.146 BKT"0.5358*exp(0.000EMP BKT <.0001; EMP <0.0001; HHD
+ 0.000HHD) 3.40| 129 | 144 | 126 157 <0.0001

0.0818BKT"0.6336*exp(0.000ROP . .
+0.6203NTD) 257|129 | 141 | 124 157 | BKT <.0001; INTD 0.0031; POP 0.00

Network

E)r.é?gﬁggO.SQOO*exp(lﬁMSlGD 3121 129 | 142 | 136 | 157 BKT <.000i§:)((3)gl<0.0001; BS
2.cl)ﬁ?égﬁé;‘:?&.)GOBQ*exp(o.02633MP 324|129 | 143 | 139 | 157 BKT <.OOOl;<I(:)>.I\g(I;’O<10.0001; AKM
2.8?03;’:‘};20.6094*exp(0.644I]NTD 274|129 | 142 | 118 | 157 BKT <.000i6?gI(;I'0D10.0018; BS
S oo, | 240] 120 12| 121 | 157 | KT <000 St 08T D

Macroreactive guidelines as describedSections 2 and ®ere followed for the black spot case
study due to the citywide scope of this thesis to evaluate 134 a#eZglanninglevel safety
analysis. All variables that were chosen for the models werdsred potential trigger

variables for bicycle collisions from the four variable themes. Since the task was in part to
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identify and rankCPZs all model groups that were found to be significant usiudgiple
variables were considered.
4.1.2 Identification and Ranking

The CPMs were used to first estimate the expected location specific collisions for each
TAZ, O ¥ 8Thisclue, together with the observed zonal collision count over three years resulted
in 10 EB safety estimates for each zone (one from each of the 10 models)thdsing
methodology described in Section 2.2 for thentdeeation and rankingdf black spotseach of
the 10CPMsidentified a range from 7 to 20 collision prone zones at the 99% confidence level.
The'O ¥ was used as the reference group norm for comparison to the EB safety estimate to
identify the Collision Prone Zones (CPxthathave the highagotential collision reduction
(PCR). The ranking of PCR was based on the difference between expected and observed
collision frequency. Using a modified ranking technique described in Section 2.2, which
considered the zonal ranking of all CPMs, the zanest frequently ranked with high PCR were
further analyzed for diagnosis and remedy. A list of te% of all topranked zones ishown
in Table6. TAZ 3420 was disqualified from the analysis due to a zero value for the exposure

variable, BKT resultingn the inability to predict collisions and calcul&@ey .
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Table 6: A list of the top 7% of CPZs rankings (top ten)

NET- NET-

EXP SOCD | SOCD | SOCD NET- WORK NET- WORK

EXP | AAAKM | TDM | COM EMP INTD | WORK PMP WORK RPKM

RANK | BKT PMP TCM EMP HHD POP | SIGD BS| AKM INTDBS | INTD
1 3160 3160 3160 | 3640 3160 3160 3160 3160 3160 3160
2 3640 3640 3640 | 3200 3640 3460 3640 3640 3640 3640
3 3460 3460 3460 | 3460 3590 2290 3200 3200 2290 3460
4 2290 2290 2290 | 3160 3470 3590 3460 3460 3460 3590
5 3590 3590 3590 | 3590 2280 3470 3590 3590 3590 2290
6 3470 3070 3470 | 2090 3000 2160 3070 3100 3070 3470
7 2160 2090 2160 | 2290 3330 3000 2090 3070 2090 3170
8 3170 3000 3170 | 3480 2290 2150 3470 3000 3470 3000
9 3010 3470 3330 | 3170 2160 3330 3170 3470 3100 3010
10 3490 2160 3600 | 3470 3510 3640 3480 3170 3170 3490

The geographic locations of the top 10 ranked CPZs are shown for each of the ten CPMs
is given inAppendix A to spatially compare the similarities and differences between the models.
The top ten zones were ranked by a gradient colour scheme: red for most severe top three zones,
orange for the fourth to sixth severe zones, and yellow for the seventh to tearthzmwes. An
example of the reference model, which used only BKT as the exposure explanatory variable, is

shown inFigure 8
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Figure 8: Top ten CPZs for the exposure model using BKT

The model groups showed consistency by providing relatively similar top CPZs identification
and ranking, with a small variability. With this ranking technique, the thregs with CPZthat
scored the worst were then carried forward for diagnosis toifigeafety problems and

potential solutions.

4.1.3 Diagnosisand Remedy
The top ten zones that were ranked collision prone were analyzed to identify the safety

problems using two indicator techniques. First, average biwgtiele collision frequencies for
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eah CPZ were compared to the regional average of 12.7 collisions over three years shown in
Table3.2 All top ten severe CPZs analyzed across the ten CPMs developed showed collisions
frequencies higher than the regional average of 12.7 collisions perzaniaiee years. Second,

the values of each CPMO6s top ranked CPZ wvaria
regional averages (also listedTiable3) to understand which variables were triggering the

collision prone ranking using a one sample sttudésest withe p degrees of freedom.

0 —— 4.1
ij Ve (4.1)

Where:

0: t-statistic

af: sample mean

i : sample standard deviation

* : specified value

¢ : sample size

These trigger variables, along with the collision frequencies identified the zonal safety
issues. Across the models, the results show that collisions are associated with a large variability
(defined as either low or high compared to the regional averag® total All Ages and
Abilities (AAA) kilometers (AAAKM), however the top most severe CPZs are associated with
low AAAKM. Across the models, collisions are associated willga variability of the TDM
variable total commuters (TCM), as well as the s@l@mographic variables of total

employment (EMP), household density (HHD), percentage of commercialsend®M), and

population (POP). The mosévere CPZs are found to be associated with high COM and EMP.
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For infrastructure variables, collisions assaciated with a large variability of intersection
density (INTD), bus stops (BS), arterial street kilometers (AKM), and percentage of park area
(PMP), but did not have an association with variability from the regional averages of the
variables signal deitg (SIGD) and percentage of residential street kilometers (RPKM). The
most severe CPZs found collisions to be associated with a low park area percentage, a high
number of bus stops, a large amount of arterial streets and a high intersection density.
Subquently, the top three collision prone areas were carried forward for diagnosis of
safety problems and analysis of potential remedies. The three areas under analysis consisted of
five CPZs: 3160, 3200, 3460, 3640 and 2290 (in the Mount Pleasant and ownto
neighbourhoods of the City of Vancouver). Due to data availability, the analysis base year used
was 2011. Since 2011, the City of Vancouver has constructed additional cycling infrastructure
such as local street bikeways, painted bike lanes, markedidaaes and separated bike lanes
(seeFigure9), as well as implemented traffic calming and spot improvenj8g}sAll
infrastructurechanges were taken into account in the detailed diagnosreiaedly for each

CPZ.
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Figure 9: New cycling infrastructure built in the City of Vancouver [86]

The detailed diagnosis was followed by a strategic remedy analysis at thdewedroncluding
infrastructure treatments to improve bicycle safety. The following safety countermeasures that
could be applied to the five diagnosed CPZs are describembie6. These infrastructure
treatments are intended to remedy the trigger visadf arterial high volume roads and high
intersection density. Themedies aretended fompotentially high bicyclevehicle conflict

locations, such as intersections.
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Table 7: Bicycle safety countermeasures

Remedy

Descriptian

All Ages and Abilities
("AAA")

A general term referring to designibgycle
infrastructure for people of all ages and
abilities, typically separated bicycle lanes f
high vehicle volume streets atraffic
calminglocal street bikeways for low
volume streets.

Curb Buldges and
Traffic Calming

A traffic calming measuresuch as
narrowing road at intersectisto improve
crossing safety for vulnerable road users
(pedestriansrad cyclists) or restricting
vehicleaccess.

Bicycle Refuges

Provides safety to bicycle crossings where
median continues through the intersection.

Elephant's Feet

Bicycle crosswalk paint markings usually
applied paralleto or part ofa pedestrian
crosswalk

Bike Boxes

Paintedat an intersection to designate an a
where cyclists may wait ahead of motor
vehicles at a red signal to get into position
for go before motor vehicles when the sign
turns green.

Bicycle Signals

A separate signal phase to allow bicycles t
crossacross high volume and speed traffic,
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Remedy Descriptian

An intersection desigmmeatmento that both
cyclists and pedestrians are separated and
Protected Intersections | protected from vehicleJ.urning phases are
also protect bicycles and pedestrians from
vehicles.

Installed across high conflict vehielgcycle
Coloured Bicycle Lanes | crossing zones to caution both drivers and
cyclists.

4.1.3.1 Collision Prone Zones 3160 & 3200

Collision prone zones 3160 and 3200 are two adjacent zondsigseel0 showingbike
routes in green and bicyelehicle collisions as red dgtsordered by West*1Avenue in the
north, Cambie Street in the west, West Menue in the south and Main Street in the east. The
area has multiple bike routes, represented in green, including local street bikew#ys on 5
Avenue, 18 Avenue, Columbia Street, Ontario Street and Yukon Street, marked shared lanes on
Main Street, paited bike lanes on7Avenue and Yukon Street and separated bike lanes coming
off of Cambie Street Bridge. Since 2011, there has been a change to CPZ 3160 with a painted
bike lane on Yukon Street froni%Avenue to 1t Avenue installed in 2012.

The CPZ 360 (north zone from West'Avenue to West Broadway) was identified as
the top most severe collision prone zone using the EB safety estimate approach for the exposure,
TDM, network and most socidemographic model groups. CPZ 3200 (south zone from West

Broadway to West 6Avenue) was found to be in the top three severe collision prone zones for
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one sociedemographic and two network model groups. From all the zones in the City of
Vancouver, the CPZ 3160 had the highest number of bicycle vehicle cdlmsien three years,
at 78, while CPZ 3200 had the third highest number of bicycle vehicle collisions over three
years, at 65. CPZ 3160 showed a higher than average bicycle kilometer travelled, total
commuters, commercial land use area, total employmemialsand intersection density, bus
stop density and total arterial street kilometers; and showed a lower than average percentage of
park area, total AAAAO bicycle kil ometers and
a higher than average commerdaaid use area, total employment and total arterial street
kilometers; while also showing a lower than average percentage of park area.

Therewerea few clues to road safety problems in the two CPZscthad be gathered
from observing the land use, trigrgvariables and bicycheehicle collisionsspatial
characteristicsThe land useonsised primarily of light industrial in CPZ 3160 and medium
density residential in CPZ 3200, with commercial uses throughout the two zones, specifically
along the major emsportation corridors of Cambie, West Broadway, Main Streetgvast 2
Avenue. Theséour arterial streets also hadyh vehicle, truck and transit traffic. All roads
within these two zonesereset in a grid pattern with high intersection density. bicgcle
volume in both zonewasalso high due to high density and many bicycle routes. Supporting the
observed zone attributes, the trigger variables for both zones were found to be: a higher than
average total commercial land use area, employment terchbstreet kilometers, along with
lower than average percentage of park area. Additionally, CPZ 3160 had a higher than average
signal and intersection density, as well as a high BKT with a low number of bicycle kilometers

ranked AAAAO. Thhtwo GPdgwagals@afpuhdyto bie hilly, visualized with 1
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and 10 meer contour lines irFigurell. Finally, there was a high number of bicycle vehicle
collisions observed in the two CPZs, primarily at intersectamusarterialg¢seeFigure10).
These tues suggest that the safety issue may be a redhk laind use type, coupled
with high traffic volume particularly on the arterial routes and high bicycle volume on bicycle
routesthatareclassified as painted bike lanes, shared lanes and locallskewtys. These
types ofbicycleroutes are typicalljess safefoc yc |l i st s and they are not
There were mangbserved collisions along arterial routes or bicycle routes, areas that had the
highest bicycle and vehicle volumes. Possii@medies suggested to solve the safety issues in
these zones include:
f Update existing bicycle routes to be ranke
installing traffic calming measures where applicable, depending on vehicle volumes on
the route This includes installing future separated bicycle lanes on the busy arterial
routes of Cambie, Broadway and Main Streets.
1 Increase signage along all routes, and install more local street bikeways onto low roads
with | ow vehicl e oateldtientoexlists.o r ai se driverso
1 Continue to address intersection safety through bicycle infrastructure spot improvements
such as curb bulges, bicycle refuges, elephant feet, bike boxes and bike signals,
especially at high volume intersectioRsotected intersectis should be considered at
high vehicle volume locations that also have high bicycle volumes, such as the Cambie

Street Bridge & B Avenue intersection.
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Figure 10: Collision Prone Zones 316(@north) & 3200 (south) showing bike routes and bicycleehicle

collisions

Figure 11: Collision Prone Zones 316@north) & 3200 (south) showing topography (1 m pink contour lines

and 10 m purple contour lines)
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